scholarly journals Seismological constraints on ice properties at Dome C, Antarctica, from horizontal to vertical spectral ratios

2010 ◽  
Vol 22 (5) ◽  
pp. 572-579 ◽  
Author(s):  
Jean-Jacques Lévêque ◽  
Alessia Maggi ◽  
Annie Souriau

AbstractThe French-Italian Concordia (CCD) seismological station at Dome C is one of two observatories setup on the ice cap in the interior of the Antarctic continent. We analysed the seismic signal due to ambient noise at this station and at three temporary stations 5 km away from Concordia, in order to specify the ice properties beneath them. A method based on the horizontal to vertical (H/V) spectral ratio, commonly used to analyse soil response in seismic regions, was applied to the Antarctic stations. The main peak in the spectral ratios is observed at frequencies 6.7–8 Hz at the Dome C stations, but it is not observed at another station on the ice cap, QSPA, where the sensor is buried at 275 m depth. This peak can be explained by a 23 m thick unconsolidated snow or firn layer with a low S-wave velocity of 0.7 km s-1, overlying a consolidated layer with S-wave velocity 1.8 km s-1. Despite the non-uniqueness of the solutions obtained by fitting the H/V spectra, this model is preferred because the depth of the velocity contrast coincides with the density at which ice particles arrange themselves in a continuous, dense lattice. A small variability of this structure is observed around Dome C.

2020 ◽  
Author(s):  
Donat Fäh ◽  
Mauro Häusler ◽  
Franziska Glueer ◽  
Jan Burjanek ◽  
Ulrike Kleinbrod

<p>Earthquake-induced landslides can have serious social impacts, causing many casualties and significant damage to infrastructure. They are the most destructive secondary hazards related to earthquakes. The impact of strong seismic events is not limited just to triggering of catastrophic slope failures, it also involves weakening of intact rock masses and reactivation of dormant slides. Hazard mitigation of potentially catastrophic landslides requires a thorough understanding of the mechanisms driving slope movements and seismic response.</p><p>We present an overview of the investigations on more than 25 instabilities. The results show that ambient vibration measurements allow for a rapid and objective characterization of potential slope instabilities. It is possible to distinguish unstable from stable areas, to identify slope eigen-frequencies, local amplification levels due to weak excitation, local deformation directions and properties of the internal slope structure. The ambient vibration techniques include single-station H/V ratios and polarization analyses, site-to-reference spectral ratios, array methods to identify surface-wave dispersion curves, and/or normal mode analysis using enhanced frequency domain decomposition. We analyse the seismic response of the rock slopes in different frequency bands together with its spatial and azimuthal variability, which is a fingerprint of the slope’s internal structure at different scales (tenth of meters to hundred meters). Normal mode behaviour is typically observed in structures with distinct sub-volumes, where the wave field at the resonance frequencies is oriented perpendicular to the deep persistent fractures. These structures show maximum amplification at their resonance frequency. Normal mode behaviour is also observed for rock towers, similar to what can be observed for buildings. In contrast, a highly fractured rock mass without dominant cracks is characterized by an S-wave velocity gradient with shear-wave velocity being significantly reduced close to the surface. Generally, normal modes do not develop, but surface waves propagate in such structures, which can be used for the determination of the S-wave profile. This is typical for large deep seated landslides with a layered structure. Without strong S-wave velocity contrast at depth, H/V spectral ratios show no clear peak and are not conclusive to characterize structures with highly fractured material. However, frequency-dependent ground-motion amplification from standard spectral ratios is directly related to the S-wave velocity profile and damping. Therefore, wave amplification can be a measure for the disintegration of the rock.</p><p>Repeated measurements on slopes allow for the detection of possible changes in their properties. Semi-permanent installations on instabilities of interest allow for a continuous assessment of the dynamic response in order to understand variations due to weather conditions and potential long-term changes. This includes the measurement of site-amplification during earthquakes derived from empirical spectral modelling. When measuring in the same season and weather condition, the seismic response of rock instabilities in general remains unchanged over years, as long a no external trigger affects the instability, including a strong earthquake, partial failure of the slope or permafrost degradation.</p>


2020 ◽  
pp. 1-10
Author(s):  
Jun Kyoung Kim ◽  
Soung Hoon Wee ◽  
Seong Hwa Yoo ◽  
Kwang Hee Kim ◽  
Jin Seok Noh ◽  
...  

2021 ◽  
Vol 226 (1) ◽  
pp. 1-13
Author(s):  
Alexis Rigo ◽  
Efthimios Sokos ◽  
Valentine Lefils ◽  
Pierre Briole

SUMMARY Following the installation of a temporary seismological network in western Greece north of the Gulf of Patras, we determined the quality of the sites of each of the 10 stations in the network. For this, we used the horizontal-to-vertical spectral ratio (HVSR) method and calculated an average curve over randomly selected days between 0 and 10 Hz. The daily HVSR curve is determined by the HVSR 12-hr calculation (1 hr every two) without distinction between seismic ambient noise and earthquake signal. The HVSR curves obtained can be classified in three categories: flat curves without amplification, curves with a amplification peaks covering a large frequency range, and curves with one or more narrow peaks. In this third category C3, one station has one peak, two have two and one has three. On the contrary of what it is commonly assumed, the amplitudes and the resonance frequencies of these narrow peaks are not stable over time in C3. We determined the maximum of the amplitude of each peak with the corresponding central frequency for each day during 2.5 yr. Except for the station with three peaks, which finally appears stable within the uncertainties, the principal peak exhibits a seasonal variation, with a maximum in winter and a minimum in summer, the observations being more dispersed during winter. The second peak, when it exists, varies in the same way except at one station where it varies oppositely. These variations are clearly correlated with the loading and unloading cycle of the underlying aquifers as shown by the comparison with water level and yield measurements from wells located close to the stations. Moreover, they are also correlated with the vertical surface displacements observed at continuously recording GPS stations. The dispersion of the observed maximum amplitude in winter is probably related to the rainfall and the soil moisture modifying the S-wave velocity as revealed by other studies. From this study, we would like to emphasize that the use the HVSR method to constrain the S-wave velocity and the thickness of the sediment layer over the bedrock in the basin, has to be done with caution. Upon further confirmation of its robustness, the HVSR methodology presented here could be a good and easy-to-use tool for a qualitative survey of the aquifer backdrop and its seasonal behaviour, and of the soil moisture conditions.


2021 ◽  
Vol 111 (2) ◽  
pp. 627-653
Author(s):  
Eri Ito ◽  
Cécile Cornou ◽  
Fumiaki Nagashima ◽  
Hiroshi Kawase

ABSTRACT Based on the diffuse field concept for a horizontal-to-vertical spectral ratio of earthquakes (eHVSR), the effectiveness of eHVSRs to invert P- and S-wave velocity structures down to the seismological bedrock (with the S-wave velocity of 3  km/s or higher) has been shown in several published works. An empirical method to correct the difference between eHVSR and a horizontal-to-vertical ratio of microtremors (mHVSR), which is called earthquake-to-microtremor ratio (EMR), has also been proposed for strong-motion sites in Japan. However, the applicability of EMR outside of Japan may not be warranted. We test EMR applicability for the Grenoble basin in France with plentiful microtremor data together with observed weak-motion recordings at five sites. We thereby establish a systematic procedure to estimate the velocity structure from microtremors and delineate the fundamental characteristics of the velocity structures. We first calculate the EMR specific for the Grenoble basin (EMRG) and calculate pseudo eHVSR (pHVSR) from EMRG and mHVSR. We compare the pHVSRs with the eHVSRs at five sites and find sufficient similarity to each other. Then, we invert velocity structures from eHVSRs, pHVSRs, and mHVSRs. The velocity structures from eHVSRs are much closer to those from pHVSRs than those from mHVSRs. We need to introduce a number of layers with gradually increasing S-wave velocities below the geological basin boundary from a previous gravity study because the theoretical eHVSR of the model with a large velocity contrast has larger peak amplitudes than the observed. The depth of the S-wave velocity of 1.3  km/s (Z1.3) shows a strong, linear correlation with the geological boundary depth. Finally, we apply our validated methodology and invert velocity structures using pHVSRs at 14 sites where there are no observed earthquakes. The overall picture of Z1.3 at a cross section in the northeastern part of the basin corresponds to the geological boundary.


1993 ◽  
Vol 83 (5) ◽  
pp. 1574-1594
Author(s):  
Javier Lermo ◽  
Francisco J. Chávez-García

Abstract The spectral ratio technique is a common useful way to estimate empirical transfer function to evaluates site effects in regions of moderate to high seismicity. The purpose of this paper is to show that it is possible to estimate empirical transfer function using spectral ratios between horizontal and vertical components of motion without a reference station. The technique, originally proposed by Nakamura to analyze Rayleigh waves in the microtremor records, is presented briefly and it is discussed why it may be applicable to study the intense S-wave part in earthquake records. Results are presented for three different cities in Mexico: Oaxaca, Oax., Acapulco, Gro., and Mexico City. These cities are very different by their geological and tectonic contexts and also by the very different epicentral distances to the main seismogenic zones affecting each city. Each time we compare the results of Nakamura's technique with standard spectral ratios. In all three cases the results are very encouraging. We conclude that, if site effects are caused by simple geology, a first estimate of dominant period and local amplification level can be obtained using records of only one station.


1997 ◽  
Vol 87 (5) ◽  
pp. 1244-1258 ◽  
Author(s):  
Jorge Aguirre ◽  
Kojiro Irikura

Abstract Clear nonlinear behavior is analyzed from the acceleration records of the 1995 Hyogo-ken Nanbu earthquake at Port Island, Kobe. From four triaxial instruments placed at four different depths, the surficial effects during strong ground motions were compared with those during weak motions before and after the mainshock. We used a spectral ratio technique and a nonlinear inversion for velocity structure to analyze the data. From the spectral analysis, we observed a large variation of the spectral ratios between the surface and different depths during the strong ground motions and during the liquefied state. The spectral ratios after the mainshock (i.e., after the liquefied state) are different from those before the mainshock. The peak frequencies in the spectral ratios after the mainshock are shifted to lower frequencies with respect to those in the spectral ratios before the mainshock. We inverted the S-wave velocities using a genetic algorithm technique to determine the velocity structure before, during, and after the mainshock. The S-wave velocity structure before and after the mainshock was found to be different. Specifically, the S-wave velocity of the second layer (5 m to 16 m depth) after the mainshock was 20% lower than before. Our analysis shows that the liquefied state remains at least 3 hr after the mainshock but no more than 24 hr. The rigidity of the soil decreased close to zero when liquefaction happened and later increases gradually following a trend that resembles a consolidation curve. The strong influence of nonlinearity during the mainshock yielded a big reduction of the horizontal surface ground motions, so that the observed horizontal peak acceleration was only about 25% of the peak acceleration expected from the linear theory. However, the nonlinear effects in the vertical peak acceleration were not significant.


1997 ◽  
Vol 87 (3) ◽  
pp. 710-730 ◽  
Author(s):  
Luis Fabián Bonilla ◽  
Jamison H. Steidl ◽  
Grant T. Lindley ◽  
Alexei G. Tumarkin ◽  
Ralph J. Archuleta

Abstract During the months that followed the 17 January 1994 M 6.7 Northridge, California, earthquake, portable digital seismic stations were deployed in the San Fernando basin to record aftershock data and estimate site-amplification factors. This study analyzes data, recorded on 31 three-component stations, from 38 aftershocks ranging from M 3.0 to M 5.1, and depths from 0.2 to 19 km. Site responses from the 31 stations are estimated from coda waves, S waves, and ratios of horizontal to vertical (H/V) recordings. For the coda and the S waves, site response is estimated using both direct spectral ratios and a generalized inversion scheme. Results from the inversions indicate that the effect of Qs can be significant, especially at high frequencies. Site amplifications estimated from the coda of the vertical and horizontal components can be significantly different from each other, depending on the choice of the reference site. The difference is reduced when an average of six rock sites is used as a reference site. In addition, when using this multi-reference site, the coda amplification from rock sites is usually within a factor of 2 of the amplification determined from the direct spectral ratios and the inversion of the S waves. However, for nonrock sites, the coda amplification can be larger by a factor of 2 or more when compared with the amplification estimated from the direct spectral ratios and the inversion of the S waves. The H/V method for estimating site response is found to extract the same predominant peaks as the direct spectral ratio and the inversion methods. The amplifications determined from the H/V method are, however, different from the amplifications determined from the other methods. Finally, the stations were grouped into classes based on two different classifications, general geology and a more detailed classification using a quaternary geology map for the Los Angeles and San Fernando areas. Average site-response estimates using the site characterization based on the detailed geology show better correlation between amplification and surface geology than the general geology classification.


Sign in / Sign up

Export Citation Format

Share Document