Effects of the 2010 Chile and 2011 Japan tsunamis on the Antarctic coastal waters as detected via online mooring system

2012 ◽  
Vol 24 (6) ◽  
pp. 665-671 ◽  
Author(s):  
Jianfeng He ◽  
Fang Zhang ◽  
Ling Lin ◽  
Minghong Cai ◽  
Haizhen Yang ◽  
...  

AbstractSea level oscillations associated with both the 2010 Chile and 2011 Japan tsunamis were recorded in the coastal waters of King George Island off the west coast of Antarctica with an online coastal mooring system. The Chile tsunami arrived at the detection site within around five hours of the earthquake. The largest wave (84.4 mm) was measured 27 hours after the first arrival. In contrast, the Japan tsunami was detected around 26 hours after the earthquake, and the maximum wave height (180.8 mm) was observed around 11 hours after the initial wave. The energy level of the earthquake and the direction of energy propagation are probably the two most significant causes of the comparatively high amplitudes of the 2011 Japan tsunami, despite the fact that its epicentre was much further away than that of 2010 Chile tsunami. The sea level oscillations associated with the tsunami increased the level of mixing of seawater in the shallow Antarctic coastal waters and influenced the environment temporarily.

Author(s):  
Vladimir Fomin ◽  
Vladimir Fomin ◽  
Dmitrii Alekseev ◽  
Dmitrii Alekseev ◽  
Dmitrii Lazorenko ◽  
...  

Storm surges and wind waves are ones of the most important hydrological characteristics, which determine dynamics of the Sea of Azov. Extreme storm surges in Taganrog Bay and flooding in the Don Delta can be formed under the effect of strong western winds. In this work the sea level oscillations and wind waves in the Taganrog Bay were simulated by means of the coupled SWAN+ADCIRC numerical model, taking into account the flooding and drying mechanisms. The calculations were carried out on an unstructured mesh with high resolution. The wind and atmospheric pressure fields for the extreme storm from 20 to 28 of September, 2014 obtained from WRF regional atmospheric model were used as forcing. The analysis of simulation results showed the following. The western and northern parts of the Don Delta were the most flood-prone during the storm. The size of the flooded area of the Don Delta exceeded 50%. Interaction of storm surge and wind wave accelerated the flooding process, increased the size of the flooded area and led to the intensification of wind waves in the upper of Taganrog Bay due to the general rise of the sea level.


2021 ◽  
Author(s):  
Krešimir Ruić ◽  
Jadranka Šepić ◽  
Maja Karlović ◽  
Iva Međugorac

<p>Extreme sea levels are known to hit the Adriatic Sea and to occasionally cause floods that produce severe material damage. Whereas the contribution of longer-period (T > 2 h) sea-level oscillations to the phenomena has been well researched, the contribution of the shorter period (T < 2 h) oscillations is yet to be determined. With this aim, data of 1-min sampling resolution were collected for 20 tide gauges, 10 located at the Italian (north and west) and 10 at the Croatian (east) Adriatic coast. Analyses were done on time series of 3 to 15 years length, with the latest data coming from 2020, and with longer data series available for the Croatian coast. Sea level data were thoroughly checked, and spurious data were removed. </p><p>For each station, extreme sea levels were defined as events during which sea level surpasses its 99.9 percentile value. The contribution of short-period oscillations to extremes was then estimated from corresponding high-frequency (T < 2 h) series. Additionally, for four Croatian tide gauge stations (Rovinj, Bakar, Split, and Dubrovnik), for period of 1956-2004, extreme sea levels were also determined from the hourly sea level time series, with the contribution of short-period oscillations visually estimated from the original tide gauge charts.  </p><p>Spatial and temporal distribution of contribution of short-period sea-level oscillations to the extreme sea level in the Adriatic were estimated. It was shown that short-period sea-level oscillation can significantly contribute to the overall extremes and should be considered when estimating flooding levels. </p>


2021 ◽  
Author(s):  
Marija Pervan ◽  
Jadranka Šepić

<p>The Adriatic Sea is known to be under a high flooding risk due to both storm surges and meteorological tsunamis, with the latter defined as short-period sea-level oscillations alike to tsunamis but generated by atmospheric processes. In June 2017, a tide-gauge station with a 1-min sampling resolution has been installed at Stari Grad (middle Adriatic Sea), the well-known meteotsunami hot-spot, which is, also, often hit by storm surges. </p><p>Three years of corresponding sea-level measurements were analyzed, and 10 strongest episodes of each of the following extreme types were extracted from the residual series: (1) positive long-period (T > 210 min) extremes; (2) negative long-period (T > 210 min) extremes; (3) short-period (T < 210) extremes. Long-period extremes were defined as situations during which sea level surpasses (is lower than) 99.7 (i.e. 2) percentile of sea level height, and short-period extremes as situations during which variance of short-period sea-level oscillations is higher than 99.4 percentile of total variance[J1]  of short-period series. A strong seasonal signal was detected for all extremes, with most of the positive long-period extremes appearing during November to February, and most of the negative long-period extremes during January to February. As for the short-period extremes, these appear evenly throughout the year, but strongest events seem to appear during May to July.</p><p>All events were associated to characteristic atmospheric situations, using both local measurements of the atmospheric variables, and ERA5 Reanalysis dataset. It was shown that positive low-pass extremes commonly appear during presence of low pressure over the Adriatic associated with strong SE winds (“sirocco”), and negative low-pass extremes are associated to the high atmospheric pressure over the area associated with either strong NE winds (“bora”), or no winds at all. On the other hand, high-pass sea level extremes are noticed during two distinct types of atmospheric situations corresponding to both “bad” (low pressure, strong SE wind) and “nice” (high pressure, no wind) weather.</p><p>It is particularly interesting that short-period extremes, of which strongest are meteotsunamis, are occasionally coincident with positive long-period extremes contributing with up to 50 percent to total sea level height – thus implying existence of a double danger phenomena (meteotsunami + storm surge). </p>


2021 ◽  
Author(s):  
Sainan Sun ◽  
Frank Pattyn

<p>Mass loss of the Antarctic ice sheet contributes the largest uncertainty of future sea-level rise projections. Ice-sheet model predictions are limited by uncertainties in climate forcing and poor understanding of processes such as ice viscosity. The Antarctic BUttressing Model Intercomparison Project (ABUMIP) has investigated the 'end-member' scenario, i.e., a total and sustained removal of buttressing from all Antarctic ice shelves, which can be regarded as the upper-bound physical possible, but implausible contribution of sea-level rise due to ice-shelf loss. In this study, we add successive layers of ‘realism’ to the ABUMIP scenario by considering sustained regional ice-shelf collapse and by introducing ice-shelf regrowth after collapse with the inclusion of ice-sheet and ice-shelf damage (Sun et al., 2017). Ice shelf regrowth has the ability to stabilize grounding lines, while ice shelf damage may reinforce ice loss. In combination with uncertainties from basal sliding and ice rheology, a more realistic physical upperbound to ice loss is sought. Results are compared in the light of other proposed mechanisms, such as MICI due to ice cliff collapse.</p>


1980 ◽  
Vol 31 (4) ◽  
pp. 415 ◽  
Author(s):  
E Wolanski ◽  
M Jones

Weather and currents at eight sites were measured and drogue trajectories obtained in July 1979 at Britomart Reef, a middle reef located at 18�16'S.,146� 38'E. in the central region of the Great Barrier Reef province. The longest current records (3 weeks) were obtained at two sites in passes between the Coral Sea and the Great Barrier Reef Lagoon where westerly currents modulated by tides were observed. Analysis of residuals also showed the importance of wind-driven secondary circulation. Non-tidal sea-level oscillations were very small. Shorter current records (1-10 days) at six sites in the lagoon and on the reef flat showed a predominant northerly flow, also modulated by tides and wind. A residual anticlockwise water circulation existed in the lagoon where flushing was controlled more by winds than by tides. The rise in sea level over the reef flat as a result of waves breaking was negligible. Temperature differences between air and water accounted for the cooling of the water column during the expedition. Constant south-east trade winds were experienced at the reef, while on land the wind was weaker. more variable, and often dominated by land-sea breezes.


2016 ◽  
Vol 12 (12) ◽  
pp. 2195-2213 ◽  
Author(s):  
Heiko Goelzer ◽  
Philippe Huybrechts ◽  
Marie-France Loutre ◽  
Thierry Fichefet

Abstract. As the most recent warm period in Earth's history with a sea-level stand higher than present, the Last Interglacial (LIG,  ∼  130 to 115 kyr BP) is often considered a prime example to study the impact of a warmer climate on the two polar ice sheets remaining today. Here we simulate the Last Interglacial climate, ice sheet, and sea-level evolution with the Earth system model of intermediate complexity LOVECLIM v.1.3, which includes dynamic and fully coupled components representing the atmosphere, the ocean and sea ice, the terrestrial biosphere, and the Greenland and Antarctic ice sheets. In this setup, sea-level evolution and climate–ice sheet interactions are modelled in a consistent framework.Surface mass balance change governed by changes in surface meltwater runoff is the dominant forcing for the Greenland ice sheet, which shows a peak sea-level contribution of 1.4 m at 123 kyr BP in the reference experiment. Our results indicate that ice sheet–climate feedbacks play an important role to amplify climate and sea-level changes in the Northern Hemisphere. The sensitivity of the Greenland ice sheet to surface temperature changes considerably increases when interactive albedo changes are considered. Southern Hemisphere polar and sub-polar ocean warming is limited throughout the Last Interglacial, and surface and sub-shelf melting exerts only a minor control on the Antarctic sea-level contribution with a peak of 4.4 m at 125 kyr BP. Retreat of the Antarctic ice sheet at the onset of the LIG is mainly forced by rising sea level and to a lesser extent by reduced ice shelf viscosity as the surface temperature increases. Global sea level shows a peak of 5.3 m at 124.5 kyr BP, which includes a minor contribution of 0.35 m from oceanic thermal expansion. Neither the individual contributions nor the total modelled sea-level stand show fast multi-millennial timescale variations as indicated by some reconstructions.


1998 ◽  
Vol 44 (148) ◽  
pp. 437-447 ◽  
Author(s):  
Gary S. Wilson ◽  
David M. Harwood ◽  
Rosemary A. Askin ◽  
Richard H. Levy

AbstractLate Neogene Sirius Group strata from Tillite Spur and Quartz Hills in the Reedy Glacier area, Antarctica, demonstrate the variability in Sirius Group facies and contrasts Sirius Group strata deposited at high and low paleo-elevation, respectively. The Tillite Spur and Quartz Hills Formations (Pliocene) are formally defined here.The Tillite Spur Formation type section crops out on the edge of the Wisconsin Plateau overlooking Tillite Spur. It comprises 32m of alternating coarse gray conglomerate and muddy olive-brown diamictites. The Quartz Hills Formation type section crops out above the western margin of Reedy Glacier in a pre-existing cirque towards the southern end of the Quartz Hills. It comprises c.100m of alternating massive diamictites and rhythmically interbedded sandstone and laminated mudstones which were deposited close to sea level and subsequently rapidly uplifted (>500 m Myr−1) to their present elevation at c. 1500 m. Three orders of paleoclimatic variability are recorded in the Sirius Group strata from Reedy Valley: (1) recycled marine microfloras in glacial diamictites indicate intervals of marine incursion into the Antarctic cratonic interior co-occurring with reductions in the East Antarctic ice sheet; (2) an advancing and retreating paleo-Reedy Glacier deposited a glacial/interglacial sequence alternating on a 10-100 kyr scale; 3) Centimeter and millimeter stratification in strata of the Quartz Hills Formation record annual kyr scale variability.


1992 ◽  
Vol 338 (1285) ◽  
pp. 235-242 ◽  

The prediction of short-term (100 year) changes in the mass balance of ice sheets and longer-term (1000 years) variations in their ice volumes is important for a range of climatic and environmental models. The Antarctic ice sheet contains between 24 M km 3 and 29 M km 3 of ice, equivalent to a eustatic sea level change of between 60m and 72m. The annual surface accumulation is estimated to be of the order of 2200 Gtonnes, equivalent to a sea level change of 6 mm a -1 . Analysis of the present-day accumulation regime of Antarctica indicates that about 25% ( ca. 500 Gt a -1 ) of snowfall occurs in the Antarctic Peninsula region with an area of only 6.8% of the continent. To date most models have focused upon solving predictive algorithms for the climate-sensitivity of the ice sheet, and assume: (i) surface mass balance is equivalent to accumulation (i.e. no melting, evaporation or deflation); (ii) percentage change in accumulation is proportional to change in saturation mixing ratio above the surface inversion layer; and (iii) there is a linear relation between mean annual surface air tem perature and saturation mixing ratio. For the A ntarctic Peninsula with mountainous terrain containing ice caps, outlet glaciers, valley glaciers and ice shelves, where there can be significant ablation at low levels and distinct climatic regimes, models of the climate response must be more complex. In addition, owing to the high accumulation and flow rates, even short- to medium -term predictions must take account of ice dynamics. Relationships are derived for the mass balance sensitivity and, using a model developed by Hindmarsh, the transient effects of ice dynamics are estimated. It is suggested that for a 2°C rise in mean annual surface tem perature over 40 years, ablation in the A ntarctic Peninsula region would contribute at least 1.0 mm to sea level rise, offsetting the fall of 0.5 mm contributed by increased accum ulation.


Sign in / Sign up

Export Citation Format

Share Document