Antarctic krill under perennial sea ice in the western Weddell Sea

1996 ◽  
Vol 8 (4) ◽  
pp. 323-329 ◽  
Author(s):  
Igor A. Melnikov ◽  
Vassily A. Spiridonov

The results of underwater observations and sampling of krill (Euphausia superba) in the western Weddell Sea during the joint Russian-USA Ice Station Weddell-1 Expedition (11 February–9 June 1992) are presented. Krill was sampled from the same large ice floe composed of both 1- and 2-year ice as it drifted northward for a distance of c. 700 km. Abundance estimates for krill under this floe were in the range 0.1–6.25 ind m−2. Krill aggregate in areas where rafting of ice floes and formation of new ice occur, or around a protected diving hole. The krill sampled consisted mainly of furcilia 6 and post-larvae which did not belong to the 0+ group originating in this (1991–92) year, but presumably hatched in the summer season of 1990–91 and developed very slowly so that at the end of the following summer season, larval stages were still present in the population. No increase of the mean krill size was observed during 2.5 months of observation. The role of larval advection for the maintenance of krill population in the Weddell Sea is discussed.

Polar Record ◽  
1991 ◽  
Vol 27 (162) ◽  
pp. 249-253 ◽  
Author(s):  
Gotthilf Hempel

AbstractSeasonal ice of the Southern Ocean, occupying some 15 x 106 km2, supports a distinctive biota based on algae that live on, within and immediately beneath the ice floes. How this annually-forming habitat recruits its biota, and the fate of the biota after the ice thaws in late summer, are little-known. Studies in the Weddell Sea in 1984–88 have shown that the seasonal ice is important as the wintering substrate of krill Euphausia superba which, together with other zooplankton and fish, supports a large breeding population of seals and penguins. Clearly a key habitat in the economy of the Southern Ocean, this seasonal ice is likely to be vulnerable to small climatic changes.


Polar Biology ◽  
2021 ◽  
Author(s):  
Carmen L. David ◽  
Fokje L. Schaafsma ◽  
Jan A. van Franeker ◽  
Evgeny A. Pakhomov ◽  
Brian P. V. Hunt ◽  
...  

AbstractSurvival of larval Antarctic krill (Euphausia superba) during winter is largely dependent upon the presence of sea ice as it provides an important source of food and shelter. We hypothesized that sea ice provides additional benefits because it hosts fewer competitors and provides reduced predation risk for krill larvae than the water column. To test our hypothesis, zooplankton were sampled in the Weddell-Scotia Confluence Zone at the ice-water interface (0–2 m) and in the water column (0–500 m) during August–October 2013. Grazing by mesozooplankton, expressed as a percentage of the phytoplankton standing stock, was higher in the water column (1.97 ± 1.84%) than at the ice-water interface (0.08 ± 0.09%), due to a high abundance of pelagic copepods. Predation risk by carnivorous macrozooplankton, expressed as a percentage of the mesozooplankton standing stock, was significantly lower at the ice-water interface (0.83 ± 0.57%; main predators amphipods, siphonophores and ctenophores) than in the water column (4.72 ± 5.85%; main predators chaetognaths and medusae). These results emphasize the important role of sea ice as a suitable winter habitat for larval krill with fewer competitors and lower predation risk. These benefits should be taken into account when considering the response of Antarctic krill to projected declines in sea ice. Whether reduced sea-ice algal production may be compensated for by increased water column production remains unclear, but the shelter provided by sea ice would be significantly reduced or disappear, thus increasing the predation risk on krill larvae.


2019 ◽  
Vol 31 (1) ◽  
pp. 16-22 ◽  
Author(s):  
Alison C. Cleary ◽  
Maria C. Casas ◽  
Edward G. Durbin ◽  
Jaime Gómez-Gutiérrez

AbstractThe keystone role of Antarctic krill,Euphausia superbaDana, in Southern Ocean ecosystems, means it is essential to understand the factors controlling their abundance and secondary production. One such factor that remains poorly known is the role of parasites. A recent study of krill diet using DNA analysis of gut contents provided a snapshot of the parasites present within 170E. superbaguts in a small area along the West Antarctic Peninsula. These parasites includedMetschnikowiaspp. fungi,Haptoglossasp. peronosporomycetes,LankesteriaandParalecudinaspp. apicomplexa,Stegophorussp. nematodes, andPseudocolliniaspp. ciliates. Of these parasites,Metschnikowiaspp. fungi andPseudocolliniaspp. ciliates had previously been observed inE. superba, as had other genera of apicomplexans, though notLankesteriaandParalecudina.In contrast, nematodes had previously only been observed in eggs ofE. superba, and there are no literature reports of peronosporomycetes in euphausiids.Pseudocolliniaspp., parasitoids which obligately kill their host, were the most frequently observed infection, with a prevalence of 12%. The wide range of observed parasites and the relatively high frequency of infections suggest parasites may play a more important role than previously acknowledged inE. superbaecology and population dynamics.


2011 ◽  
Vol 52 (57) ◽  
pp. 43-51 ◽  
Author(s):  
Donghui Yi ◽  
H. Jay Zwally ◽  
John W. Robbins

AbstractSea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October–November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33–0.41m and the mean thicknesses are 2.10–2.59 m. During February–March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35–0.46m and the mean thicknesses are 1.48–1.94 m. During May–June, the mean freeboards and thicknesses are 0.26–0.29m and 1.32–1.37 m, respectively. the 6 year trends in sea-ice extent and volume are (0.023±0.051)×106 km2 a–1 (0.45% a–1) and (0.007±0.092)×103 km3 a–1 (0.08% a–1); however, the large standard deviations indicate that these positive trends are not statistically significant.


2012 ◽  
Vol 6 (2) ◽  
pp. 479-491 ◽  
Author(s):  
A. I. Weiss ◽  
J. C. King ◽  
T. A. Lachlan-Cope ◽  
R. S. Ladkin

Abstract. This study investigates the surface albedo of the sea ice areas adjacent to the Antarctic Peninsula during the austral summer. Aircraft measurements of the surface albedo, which were conducted in the sea ice areas of the Weddell and Bellingshausen Seas show significant differences between these two regions. The averaged surface albedo varied between 0.13 and 0.81. The ice cover of the Bellingshausen Sea consisted mainly of first year ice and the sea surface showed an averaged sea ice albedo of αi = 0.64 ± 0.2 (± standard deviation). The mean sea ice albedo of the pack ice area in the western Weddell Sea was αi = 0.75 ± 0.05. In the southern Weddell Sea, where new, young sea ice prevailed, a mean albedo value of αi = 0.38 ± 0.08 was observed. Relatively warm open water and thin, newly formed ice had the lowest albedo values, whereas relatively cold and snow covered pack ice had the highest albedo values. All sea ice areas consisted of a mixture of a large range of different sea ice types. An investigation of commonly used parameterizations of albedo as a function of surface temperature in the Weddell and Bellingshausen Sea ice areas showed that the albedo parameterizations do not work well for areas with new, young ice.


2008 ◽  
Vol 20 (5) ◽  
pp. 437-440 ◽  
Author(s):  
Kunio T. Takahashi ◽  
Masaki Kobayashi ◽  
So Kawaguchi ◽  
Junko Saigusa ◽  
Atsushi Tanimura ◽  
...  

AbstractThe geographical distribution of protozoan parasiteCephaloidophora pacificaAvdeev (Order Eugregarininda) associated with Antarctic krill,Euphausia superba, was examined in samples collected from the vicinity of the Antarctic Peninsula, near Syowa Station, and Pacific and Indian sectors of the Southern Ocean.Cephaloidophora pacificawas found at all stations around the Antarctic, with 96.4% of the euphausiids infected (n = 195). The numbers ofC. pacificaper krill ranged from 0 to 8089 krill-1, and the average was 350.0 ± 787.8 (mean ± SD). The frequency distributions ofC. pacificashowed an overdispersed parasite population (i.e. the variance was greater than the mean) at all locations. Statistical analysis showed that whilst the geographical location did not have a significant effect on intensity ofC. pacificathe maturity stage of krill did, with an increasing intensity of infection as krill matures. The infestation ofE. superbaby eugregarinid protozoan is considered to be a circum-Antarctic phenomenon, and it occurs equally throughout the Southern Ocean.


1996 ◽  
Vol 42 (141) ◽  
pp. 249-254 ◽  
Author(s):  
David Crane ◽  
Peter Wadhams

AbstractA study of sea ice in the northern Weddell Sea was done, relating the ice motion, determined using an array of satellite-tracked drifters, deployed into ice floes, to parameters describing the nature of the ice cover, obtained from an analysis of Advanced Very High Resolution Radiometer (AVHRR) imagery. It was found that the ice motion was predominantly wind-driven, responding to the passage of low-pressure systems across the area. The correlation length of the strain field over the entire measurement period was around 200 km. At high concentrations the ice responded as a rigid body with coherent motion, but below a concentration of around 93%, differential motion occurred. The nature of the ice motion was found to depend upon the lead parameters, with low values of pure convergence and divergence and larger values of vorticity and deformation of the ice field. The vorticity was found to be well correlated with the atmospheric pressure, with a time lag of less than 3 h, implying an almost instantaneous response of the ice cover to meteorological forcing.


2004 ◽  
Vol 61 (5) ◽  
pp. 736-743 ◽  
Author(s):  
Nobue Kasamatsu ◽  
So Kawaguchi ◽  
Shuichi Watanabe ◽  
Tsuneo Odate ◽  
Mitsuo Fukuchi

The role of zooplankton grazing on dimethylsulfide (DMS) and dissolved dimethylsulfoniopropionate (DMSPd) production was investigated in the Antarctic Ocean in January and February 2002. Dominant herbivorous macrozooplankton of this region, the Antarctic krill Euphausia superba and the tunicate Salpa thompsoni, were used in shipboard incubation experiments. The concentration of DMSPd + DMS increased in the water during incubation with krill. The production rate was 2.96 ± 2.78 nmol DMSPd + DMS·krill–1·h–1 (mean ± SD). In addition, the DMSPd + DMS production rate was linearly related to the ingestion rate of krill (r2 = 0.664, p ≤ 0.01). Addition of salps to natural surface water, however, did not change the DMSPd + DMS concentrations. During the experiments, both animals fed on phytoplankton cells. The fecal pellets of krill contained broken phytoplankton cells, whereas those of salps contained unbroken cells. These results suggest that sloppy feeding by krill is a more likely mechanism for producing DMS and DMSPd than the direct ingestion of phytoplankton cells by salps. The decrease of DMS concentrations in the upper 200 m of the water column from January to February may be explained, in part, by changes in the composition of the macrozooplankton community.


Sign in / Sign up

Export Citation Format

Share Document