scholarly journals Dynamics and asymptotic profiles of endemic equilibrium for two frequency-dependent SIS epidemic models with cross-diffusion

2018 ◽  
Vol 31 (1) ◽  
pp. 26-56 ◽  
Author(s):  
HUICONG LI ◽  
RUI PENG ◽  
TIAN XIANG

This paper is concerned with two frequency-dependent susceptible–infected–susceptible epidemic reaction–diffusion models in heterogeneous environment, with a cross-diffusion term modelling the effect that susceptible individuals tend to move away from higher concentration of infected individuals. It is first shown that the corresponding Neumann initial-boundary value problem in an n-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly in-time bounded regardless of the strength of the cross-diffusion and the spatial dimension n. It is further shown that, even in the presence of cross-diffusion, the models still admit threshold-type dynamics in terms of the basic reproduction number $\mathcal {R}_0$ – i.e. the unique disease-free equilibrium is globally stable if $\mathcal {R}_0\lt1$, while if $\mathcal {R}_0\gt1$, the disease is uniformly persistent and there is an endemic equilibrium (EE), which is globally stable in some special cases with weak chemotactic sensitivity. Our results on the asymptotic profiles of EE illustrate that restricting the motility of susceptible population may eliminate the infectious disease entirely for the first model with constant total population but fails for the second model with varying total population. In particular, this implies that such cross-diffusion does not contribute to the elimination of the infectious disease modelled by the second one.

2016 ◽  
Vol 66 (1) ◽  
Author(s):  
Yuming Chen ◽  
Junyuan Yang

AbstractWe propose an SEI epidemic model for plant diseases, which incorporates disease latency, disease-caused removal, and constant recruitment in both susceptible and exposed classes. Because of the recruitment and disease-caused removal, the total population is varying. It is shown that the model only has an endemic equilibrium and the equilibrium is globally stable.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Yaru Hu ◽  
Jinfeng Wang

<p style='text-indent:20px;'>The dynamical behavior of an SIRS epidemic reaction-diffusion model with frequency-dependent mechanism in a spatially heterogeneous environment is studied, with a chemotaxis effect that susceptible individuals tend to move away from higher concentration of infected individuals. Regardless of the strength of the chemotactic coefficient and the spatial dimension <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>, it is established the unique global classical solution which is uniformly-in-time bounded. The model still recognizes the threshold dynamics in terms of the basic reproduction number <inline-formula><tex-math id="M2">\begin{document}$ \mathcal{R}_{0} $\end{document}</tex-math></inline-formula> even in the case of chemotaxis effects: if <inline-formula><tex-math id="M3">\begin{document}$ \mathcal{R}_{0}&lt;1 $\end{document}</tex-math></inline-formula>, the unique disease free equilibrium is globally stable; if <inline-formula><tex-math id="M4">\begin{document}$ \mathcal{R}_{0}&gt;1 $\end{document}</tex-math></inline-formula>, the disease is uniformly persistent and there is at least one endemic equilibrium, which is globally stable in some special cases with weak chemotactic sensitivity. We also show the asymptotic profile of endemic equilibria (when exists) if the diffusion (migration) rate of the susceptible is small, which indicates that the disease always exists in the entire habitat in this case. Our results suggest that one cannot eradicate the SIRS disease model by only controlling the diffusion rate of susceptible individuals.</p>


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Hongfei Xu ◽  
Jinfeng Wang ◽  
Xuelian Xu

<p style='text-indent:20px;'>This paper is concerned with a predator-prey model with stage structure for the predator, with a cross-diffusion term modeling the effect that mature predators move toward the direction of gradient of prey. It is first shown that the corresponding Neumann initial-boundary value problem in an <inline-formula><tex-math id="M1">\begin{document}$ n $\end{document}</tex-math></inline-formula>-dimensional bounded smooth domain possesses a unique global classical solution which is uniformly-in-time bounded for the weak cross-diffusion. It is further shown that, in the presence of cross-diffusion, the model admits threshold-type dynamics in terms of the cross-diffusion coefficient; that is, the homogenous steady state keeps stability for weak attractive prey-taxis, while the stationary patterns will occur for strong attractive prey-taxis. This implies that such cross diffusion does contribute to the rich dynamics of predator-prey model with stage structure for predators.</p>


2008 ◽  
Vol 01 (01) ◽  
pp. 65-74 ◽  
Author(s):  
YIPING LIU ◽  
JING-AN CUI

In this paper, we give a compartment model to discuss the influence of media coverage to the spreading and controlling of infectious disease in a given region. The model exhibits two equilibria: a disease-free and a unique endemic equilibrium. Stability analysis of the models shows that the disease-free equilibrium is globally asymptotically stable if the reproduction number (ℝ0), which depends on parameters, is less than unity. But if ℝ0 > 1, it is shown that a unique endemic equilibrium appears, which is asymptotically stable. On a special case, the endemic equilibrium is globally stable. We discuss the role of media coverage on the spreading based on the theory results.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Chengxia Lei ◽  
Xinhui Zhou

<p style='text-indent:20px;'>In this paper, we investigate the effect of spontaneous infection and advection for a susceptible-infected-susceptible epidemic reaction-diffusion-advection model in a heterogeneous environment. The existence of the endemic equilibrium is proved, and the asymptotic behaviors of the endemic equilibrium in three cases (large advection; small diffusion of the susceptible population; small diffusion of the infected population) are established. Our results suggest that the advection can cause the concentration of the susceptible and infected populations at the downstream, and the spontaneous infection can enhance the persistence of infectious disease in the entire habitat.</p>


2019 ◽  
Vol 29 (03) ◽  
pp. 1950036 ◽  
Author(s):  
R. Sivasamy ◽  
M. Sivakumar ◽  
K. Balachandran ◽  
K. Sathiyanathan

This study focuses on the spatial-temporal dynamics of predator–prey model with cross-diffusion where the intake rate of prey is per capita predator according to ratio-dependent functional response and the prey is harvested through nonlinear harvesting strategy. The permanence analysis and local stability analysis of the proposed model without cross-diffusion are analyzed. We derive the conditions for the appearance of diffusion-driven instability and global stability of the considered model. Also the parameter space for Turing region is specified by keeping the cross-diffusion coefficient as one of the crucial parameters. Numerical simulations are given to justify the proposed theoretical results and to show that the cross-diffusion term plays a significant role in the pattern formation.


2021 ◽  
pp. 1-66
Author(s):  
Akio Ito

This paper deals with a nonlinear system (S) composed of three PDEs and one ODE below: [Formula: see text] The system (S) was proposed as one of the mathematical models which describe tumor invasion phenomena with chemotaxis effects. The most important and interesting point is that the diffusion coefficient of tumor cells, denoted by [Formula: see text], is influenced by both nonlocal effect of a chemical attractive substance, denoted by [Formula: see text], and the local one of extracellular matrix, denoted by [Formula: see text]. From this point, the first PDE in (S) contains a nonlinear cross diffusion. Actually, this mathematical setting gives an inner product of a suitable real Hilbert space, which governs the dynamics of the density of tumor cells [Formula: see text], a quasi-variational structure. Hence, the first purpose in this paper is to make it clear what this real Hilbert space is. After this, we show the existence of strong time local solutions to the initial-boundary problems associated with (S) when the space dimension is [Formula: see text] by applying the general theory of evolution inclusions on real Hilbert spaces with quasi-variational structures. Moreover, for the case [Formula: see text] we succeed in constructing a strong time global solution.


Author(s):  
Oluwafemi Temidayo J. ◽  
Azuaba E. ◽  
Lasisi N. O.

In this study, we analyzed the endemic equilibrium point of a malaria-hygiene mathematical model. We prove that the mathematical model is biological and meaningfully well-posed. We also compute the basic reproduction number using the next generation method. Stability analysis of the endemic equilibrium point show that the point is locally stable if reproduction number is greater that unity and globally stable by the Lasalle’s invariant principle. Numerical simulation to show the dynamics of the compartment at various hygiene rate was carried out.


2021 ◽  
Author(s):  
AM Karmishin ◽  
IV Borisevich ◽  
VI Skvortsova ◽  
AA Goryaev ◽  
SM Yudin

Popular SIR models and their modifications used to generate predictions about epidemics and, specifically, the COVID-19 pandemic, are inadequate. The aim of this study was to find the laws describing the probability of infection in a biological object. Using theoretical methods of research based on the probability theory, we constructed the laws describing the probability of infection in a human depending on the infective dose and considering the temporal characteristics of a given infection. The so-called generalized time-factor law, which factors in the time of onset and the duration of an infectious disease, was found to be the most general. Among its special cases are the law describing the probability of infection developing by some point in time t, depending on the infective dose, and the law that does not factor in the time of onset. The study produced a full list of quantitative characteristics of pathogen virulence. The laws described in the study help to solve practical tasks and should lie at the core of mathematical epidemiological modeling.


2021 ◽  
Vol 31 (6) ◽  
Author(s):  
Li Chen ◽  
Esther S. Daus ◽  
Alexandra Holzinger ◽  
Ansgar Jüngel

AbstractPopulation cross-diffusion systems of Shigesada–Kawasaki–Teramoto type are derived in a mean-field-type limit from stochastic, moderately interacting many-particle systems for multiple population species in the whole space. The diffusion term in the stochastic model depends nonlinearly on the interactions between the individuals, and the drift term is the gradient of the environmental potential. In the first step, the mean-field limit leads to an intermediate nonlocal model. The local cross-diffusion system is derived in the second step in a moderate scaling regime, when the interaction potentials approach the Dirac delta distribution. The global existence of strong solutions to the intermediate and the local diffusion systems is proved for sufficiently small initial data. Furthermore, numerical simulations on the particle level are presented.


Sign in / Sign up

Export Citation Format

Share Document