scholarly journals Effect of simulated rainfall during wheat seed development and maturation on subsequent seed longevity is reversible

2016 ◽  
Vol 26 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Richard H. Ellis ◽  
Gajender Yadav

AbstractPoor wheat seed quality in temperate regions is often ascribed to wet production environments. We investigated the possible effect of simulated rain during seed development and maturation on seed longevity in wheat (Triticum aestivum L.) cv. Tybalt grown in the field (2008, 2009) or a polythene tunnel house (2010). To mimic rain, the seed crops were wetted from above with the equivalent of 30 mm (2008, 2009) or 25 mm rainfall (2010) at different stages of seed development and maturation (17–58 DAA, days after 50% anthesis), samples were harvested serially, and subsequent air-dry seed longevity estimated. No pre-harvest sprouting occurred. Seed longevity (p50, 50% survival period in experimental hermetic storage at 40°C with c. 15% moisture content) in field-grown controls increased during seed development and maturation, attaining maxima at 37 (2008) or 44 DAA (2009); it declined thereafter. Immediate effects of simulated rain at 17–58 DAA in field studies (2008, 2009) on subsequent seed longevity were negative but small, e.g. a 1–4 d delay in seed quality improvement for treatments early in development, but with no damage detected at final harvests. In rainfall-protected conditions (2010), simulated rain close to harvest maturity (55–56 DAA) reduced longevity immediately and substantially, with greater damage from two sequential days of wetting than one; again, later harvests provided evidence of recovery in subsequent longevity. In the absence of pre-harvest sprouting, the potentially deleterious effects of rainfall to wheat seed crops on subsequent seed longevity may be reversible in full or in part.

2016 ◽  
Vol 26 (4) ◽  
pp. 332-341 ◽  
Author(s):  
Gajender Yadav ◽  
Richard H. Ellis

AbstractClimate change will alter rainfall patterns. The effect of rainfall during seed development and maturation on wheat (Triticum aestivum L.) seed quality (ability to germinate normally; air-dry longevity in hermetic storage at 40°C with c. 15% moisture content) was investigated in field experiments (2011, 2012) by providing rain shelter or simulating additional rainfall. High ability to germinate was detected from mid seed filling until after harvest maturity. Subsequent longevity was more sensitive to stage of development. It increased progressively, reaching maximum values during maturation drying at 53–56 days after anthesis (DAA), 5–11 (2011) or 8–14 (2012) days beyond mass maturity; maximal values were maintained thereafter in 2011; longevity declined with further delay to harvest in 2012. Post-anthesis protection from rain had no major effect: in later harvests longevity was slightly greater than the control in each year, but in 2011 wetting treatments were also superior to the control. Wetting ears at all stages of development reduced longevity immediately, but considerable recovery in subsequent longevity occurred when seeds re-dried in planta for several days. The greatest damage to longevity from ear wetting occurred with treatments at about 56 DAA, with poorest recovery at 70 DAA (i.e. around harvest maturity) in absolute terms but at 56–70 DAA relative to gross damage. Hence, seed quality in a strongly dormant wheat variety was resilient to rain. Net damage was greatest from rain late in maturation. The phase of seed quality improvement in planta was dynamic with deterioration also occurring then, but with net improvement overall.


2018 ◽  
Vol 28 (1) ◽  
pp. 72-81 ◽  
Author(s):  
Sujittra Tejakhod ◽  
Richard H. Ellis

AbstractThe resilience of seed quality in rice (Oryza sativaL.) to flooding was investigated. Pot-grown plants of thejaponicacv. Gleva, theindicacv. IR64, and the introgressed line IR64-Sub1 were submerged in water, to simulate flooding, for 3‒5 days at different stages of seed development and maturation. Mean seed weight, pre-harvest sprouting, ability to germinate, and subsequent longevity in air-dry storage were assessed. Whereas seed quality in both IR64 and IR64-Sub1 was resilient to submergence, in Gleva the longer the duration of submergence and the later in development when plants were submerged the greater the pre-harvest sprouting. Thousand seed dry weight was reduced more by submergence in Gleva than IR64 or IR64-Sub1. At harvest maturity, few pre-harvest sprouted seeds were able to germinate upon rehydration after desiccation to 11‒12% moisture content. Seed longevity of the non-sprouted seed fraction in air-dry hermetic storage (40°C, 15% moisture content) was not affected greatly by submergence, but longevity of thejaponicarice was less than that of theindicarices due to the former's steeper seed survival curves. Longevity of the twoindicarices was predicted well by the seed viability equation and previously published estimates of viability constants for rice. The greater dormancy of IR64 and IR64-Sub1, compared with Gleva, enhanced resilience to pre-harvest sprouting and reduced thousand seed dry weight from plant submergence. There was little or no effect of plant submergence on subsequent air-dry storage longevity of non-sprouted seeds in any genotype.


2019 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Richard H. Ellis

AbstractThe long-standing hypothesis that seed quality improves during seed filling, is greatest at the end of seed filling, and declines thereafter (because seed deterioration was assumed to begin then), provided a template for research in seed quality development. It was rejected by investigations where seed quality was shown to improve throughout both seed development and maturation until harvest maturity, before seed deterioration was first observed. Several other temporal patterns of seed quality development and decline have also been reported. These are portrayed and compared. The assessment suggests that the original hypothesis was too simple, because it combined several component hypotheses: (a) the seed improvement (only) phase ends before seed deterioration (only) commences; (b) there is only a brief single point in time during seed development and maturation when, in all circumstances, seed quality is maximal; (c) the seed quality improvement phase coincides perfectly with seed filling, with deterioration only post-seed filling. It is concluded that the search for the single point of maximum seed quality was a false quest because (a) seed improvement and deterioration may cycle (sequentially if not simultaneously) during seed development and maturation; (b) the relative sensitivity of the rates of improvement and deterioration to environment may differ; (c) the period of maximum quality may be brief or extended. Hence, when maximum quality is first attained, and for how long it is maintained, during seed development and maturation varies with genotype and environment. This is pertinent to quality seed production in current and future climates as it will be affected by climate change and a likelihood of more frequent coincidence of brief periods of extreme temperatures with highly sensitive phases of seed development and maturation. This is a possible tipping point for food security and for ecological diversity.


Crop Science ◽  
2003 ◽  
Vol 43 (5) ◽  
pp. 1782-1788 ◽  
Author(s):  
Jason Argyris ◽  
David Sanford ◽  
Dennis TeKrony

2011 ◽  
Vol 21 (2) ◽  
pp. 95-101 ◽  
Author(s):  
Richard H. Ellis

AbstractThe potential longevity of japonica rice (Oryza sativa L. subsp. japonica) seed is particularly sensitive to high temperature – and thus climate change – during development and maturation. Cultivar Taipei 309 was grown at 28/20°C (12 h/12 h) and then from 19 DAA (days after 50% anthesis), when seeds were just over half filled, at 28/20°C, 30/22°C, 32/24°C or 34/26°C (12 h/12 h). Whereas ability to germinate ex planta had been achieved in almost all seeds by 24 DAA, only half the population were desiccation tolerant. Desiccation tolerance continued to increase over the subsequent 28 d, similarly at all four temperatures. Subsequent longevity, assessed by p50 (period in days to reduce viability to 50% in hermetic storage at 40°C with c. 15% moisture content), increased progressively at 28/20°C until 38 DAA, and remained constant until the final harvest (52 DAA). The three warmer temperature regimes provided similar longevity to 28/20°C at any one harvest, except at 38 DAA where the warmest (34/26°C) was poorer. That temperature regime also provided greater seed-to-seed variability within each survival curve. The results confirm that appreciable improvement in seed quality occurs during seed development and also subsequent maturation in japonica rice, but that increase in temperature from 28/20°C to 34/26°C during late seed filling onwards has comparatively little effect thereon. Comparison with previous investigations suggests that seed quality development may be less sensitive to high temperatures during late development and maturation than during the early seed development that precedes it.


1993 ◽  
Vol 3 (4) ◽  
pp. 247-257 ◽  
Author(s):  
I. Demir ◽  
R. H. Ellis

AbstractMarrow (Cucurbita pepo L.) seed quality was monitored during seed development and maturation in 2 years. Mass maturity (end of the seed-filling phase) was attained 61–63 d and 54 d after anthesis in 1989 and 1990, respectively, when seed moisture contents had declined to 40–48% (wet basis). Considerable dormancy was encountered during standard germination tests, but was overcome by decoating the seeds. The ability of dried, decoated seeds to germinate normally in standard tests reached near maximal values shortly after mass maturity; these values were more or less maintained in seeds from subsequent harvests. Maximum seed longevity in air-dry storage was detected in seeds harvested 24 d (1989) and 26–31 d (1990) after mass maturity. Seedling dry weights 15 d after sowing were greatest for seeds harvested 2–22 d (basal fruits) or 14 d (apical fruits) after mass maturity in 1989, and were positively correlated (P<0.01) with times from seedling emergence to seedling harvest. Consequently in the subsequent year the hypothesis that these differences in seedling dry weight were solely due to differences in times from sowing to emergence was tested (and confirmed). Seedling relative growth rates did not differ with seed harvest date (P>0.25) in 1990, but absolute seedling size did (P<0.005); seeds harvested 21–31 d after mass maturity had the greatest seedling weight and also growth rate (in absolute terms) at any one time after sowing. Decline in seed quality (when assessed by both potential seed longevity and seedling growth) was not detected until the final harvest interval in 1990 (85–90 d after anthesis, 31–36 d after mass maturity). These results for marrow contradict both aspects of the general hypothesis that seed quality is maximal at the end of the seed-filling phase and that viability and vigour begin to decline thereafter.


1999 ◽  
Vol 9 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Gregory E. Welbaum

Seed production in the family Cucurbitaceae is more complicated than in dry-seeded grain crops because seeds mature within a moist fruit and are often held at high moisture content for several weeks before seed harvest. Muskmelon (Cucumis melo L.), a member of this family, was used as a model system to contrast seed development with crops that are dry at maturity. A detailed time course for `Top Mark' fruit and seed development is presented based on previous studies. In muskmelon fruit, precocious germination is inhibited osmotically by the low water potential of the surrounding fruit tissue. Muskmelon seeds exhibit primary dormancy that affects viability very early in development but has a greater effect on seed vigor and is removed by afterripening during dry storage. Osmotically distended or fish-mouth seeds are dead seeds that occur in cucurbit seed lots after aging kills the embryo without disrupting the semipermeable endosperm that completely surrounds and protects the embryo. Cucurbit seed crops should be harvested before the onset of fruit senescence to prevent aging of the seeds inside. Open-pollinated cucurbit seed crops are frequently once-over mechanically harvested. Mechanical harvesting combines seeds from many stages of development into a single seed lot, which may adversely affect quality and increase seed to seed variability. Hand harvesting cucurbit fruit at the optimal stage of development could improve seed quality in some instances but is more costly and time consuming and would increase production costs.


1998 ◽  
Vol 123 (4) ◽  
pp. 692-699 ◽  
Author(s):  
David W. Still ◽  
Kent J. Bradford

With many seed crops, the most difficult production decision is when to harvest. In indeterminate crops such as Brassica species, early harvests result in immature seed of low vigor while late harvests risk seed deterioration and seed loss due to shattering. To provide a biological basis on which to determine harvest timing, we have characterized seed development in rape seed (Brassica napus L. `Weststar') and red cabbage (Brassica oleracea L. Group Capitata) using population-based hydrotime and ABA-time models. These models provide information relevant to assessing physiological maturity, and therefore, seed quality. The hydrotime and ABA-time models quantify germination rate, the uniformity of germination, viability, and the sensitivity of germination to water potential and ABA. Indices derived from these models, along with maximum germination and t50 values, were used to determine physiological maturity (maximum seed quality) of the seeds during development. The overall trends in seed development were similar in both species: as seeds matured, germination became more uniform and less sensitive to low Ψ and externally applied ABA. The models accurately described germination time courses and final germination percentages except for seeds imbibed at very high concentrations of ABA. In rape seed, physiological maturity was attained several days after maximum seed dry mass, while in red cabbage physiological maturity occurred at or after maximum seed dry mass. Vigor indices were correlated with easily discerned traits such as moisture content and silique phenotypic characteristics. The results of these experiments suggest that hydrotime and ABA-time models can be successfully used to provide a biological basis on which to determine harvest in brassicas.


2010 ◽  
Vol 67 (5) ◽  
pp. 540-545 ◽  
Author(s):  
Bruno Guilherme Torres Licursi Vieira ◽  
Roberval Daiton Vieira ◽  
Francisco Carlos Krzyzanowski ◽  
José de Barros França Neto

The growing demand for high quality soybean [Glycine max (L.) Merrill] seeds requires a precise seed quality control system from the seed industry. One way to accomplish this is by improving vigor testing. Cold test has been traditionally employed for corn seeds. However, it has also been used for other seed crops such as cotton (Gossypium spp.), soybean (Glycine Max), dry bean (Phaseolus vulgaris) and pea (Pisum sativum). This study was carried out with the objective of adjusting an alternative procedure for the cold test to determine soybean seed vigor. Six commercial soybean seed lots of the cultivar BRS 133 were used. The physiological potential of the seed lots was evaluated by germination on paper towel and sand box, seedling field emergence, tetrazolium, accelerated aging and electrical conductivity tests. Seed moisture content was also determined. The temperature used for the cold test procedures was 10ºC during five days. Four cold test procedures were evaluated: i) plastic boxes with soil; ii) rolled paper towel with soil; iii) rolled paper towel without soil, and iv) an alternative procedure, using rolled paper towel without soil under cold water. A completely randomized experimental design with eight replications was used and the means were compared by the Tukey test (p = 0.05). To verify the dependence between the alternative test and others single linear correlation was used. All cold test procedures had similar coefficients of variation (CV), highlighting that rolled paper towel with soil and the alternative procedure had the best performance, with an average of 94% and 93% normal seedlings and CV of 3.2% and 3.6%, respectively. The alternative procedure has satisfactory results for estimating soybean seed vigor, yielding consistent results compared to the traditional procedure.


Sign in / Sign up

Export Citation Format

Share Document