scholarly journals Cucurbit Seed Development and Production

1999 ◽  
Vol 9 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Gregory E. Welbaum

Seed production in the family Cucurbitaceae is more complicated than in dry-seeded grain crops because seeds mature within a moist fruit and are often held at high moisture content for several weeks before seed harvest. Muskmelon (Cucumis melo L.), a member of this family, was used as a model system to contrast seed development with crops that are dry at maturity. A detailed time course for `Top Mark' fruit and seed development is presented based on previous studies. In muskmelon fruit, precocious germination is inhibited osmotically by the low water potential of the surrounding fruit tissue. Muskmelon seeds exhibit primary dormancy that affects viability very early in development but has a greater effect on seed vigor and is removed by afterripening during dry storage. Osmotically distended or fish-mouth seeds are dead seeds that occur in cucurbit seed lots after aging kills the embryo without disrupting the semipermeable endosperm that completely surrounds and protects the embryo. Cucurbit seed crops should be harvested before the onset of fruit senescence to prevent aging of the seeds inside. Open-pollinated cucurbit seed crops are frequently once-over mechanically harvested. Mechanical harvesting combines seeds from many stages of development into a single seed lot, which may adversely affect quality and increase seed to seed variability. Hand harvesting cucurbit fruit at the optimal stage of development could improve seed quality in some instances but is more costly and time consuming and would increase production costs.

2010 ◽  
Vol 67 (5) ◽  
pp. 540-545 ◽  
Author(s):  
Bruno Guilherme Torres Licursi Vieira ◽  
Roberval Daiton Vieira ◽  
Francisco Carlos Krzyzanowski ◽  
José de Barros França Neto

The growing demand for high quality soybean [Glycine max (L.) Merrill] seeds requires a precise seed quality control system from the seed industry. One way to accomplish this is by improving vigor testing. Cold test has been traditionally employed for corn seeds. However, it has also been used for other seed crops such as cotton (Gossypium spp.), soybean (Glycine Max), dry bean (Phaseolus vulgaris) and pea (Pisum sativum). This study was carried out with the objective of adjusting an alternative procedure for the cold test to determine soybean seed vigor. Six commercial soybean seed lots of the cultivar BRS 133 were used. The physiological potential of the seed lots was evaluated by germination on paper towel and sand box, seedling field emergence, tetrazolium, accelerated aging and electrical conductivity tests. Seed moisture content was also determined. The temperature used for the cold test procedures was 10ºC during five days. Four cold test procedures were evaluated: i) plastic boxes with soil; ii) rolled paper towel with soil; iii) rolled paper towel without soil, and iv) an alternative procedure, using rolled paper towel without soil under cold water. A completely randomized experimental design with eight replications was used and the means were compared by the Tukey test (p = 0.05). To verify the dependence between the alternative test and others single linear correlation was used. All cold test procedures had similar coefficients of variation (CV), highlighting that rolled paper towel with soil and the alternative procedure had the best performance, with an average of 94% and 93% normal seedlings and CV of 3.2% and 3.6%, respectively. The alternative procedure has satisfactory results for estimating soybean seed vigor, yielding consistent results compared to the traditional procedure.


2019 ◽  
Vol 40 (5) ◽  
pp. 1789 ◽  
Author(s):  
Eduardo Silvestrini Tonello ◽  
Nataliê Luíse Fabbian ◽  
Deivid Sacon ◽  
Aline Netto ◽  
Vanessa Neumann Silva ◽  
...  

The suitable establishment of a crop depends on seed quality, among another factors. However, with high production costs many producers use uncertified seeds, to reduce expenses with this input at sowing time. The objective was to evaluate germination, vigor and health of soybean seeds, diseases incidence in cvs. NS 5445 IPRO and BMX Ativa RR, whose seeds were of certified and uncertified origins, as well as yield components and grain yield of soybeans, with or without fungicides application. The experiments were conducted in the 2015/16 and 2016/17 crop season, in Erechim-RS. Two experiments were carried out in a completely randomized design (DIC): one in the laboratory, under a 2 x 2 factorial scheme (cultivar x origin); and another in the field in a homogeneous area, in a 2 x 2 factorial scheme (with/without fungicide application and certified/uncertified seed) for two cultivars, both with four replications. The variables evaluated were: germination and seed health, yield (kg ha-1), thousand grains weight (g), number of grains per plant, and incidence of foliar fungal diseases. The main fungi identified in seeds were Aspergillus sp., Penicillium sp. and Fusarium sp. The highest incidence percentage were obtained in uncertifed seeds, at two harvests. Both cultivars and origins presented the minimum germination required for commercialization, however, certified seeds had better performance for seed vigor. As for normal seedlings, there was a significant difference only for the 2016/17 crop season, with the highest percentage obtained in certified seeds (52.0% for NS 5445 and 73.5% for BMX Ativa). Best productivity was achieved with cultivation of certified seeds associated with fungicides in both crops and cultivars. For thousand grains weight (TGW) there was no difference in origin, but only for cultivar and fungicides apply. The number of grains per plant was higher in plants from certified seeds and that received fungicides, being cv. BMX Ativa the most responsive for the two harvests analyzed. The main diseases found in the two harvests were: Asian rust, powdery mildew, mildew, septoriosis and cercosporiosis. However, seed origin, in both crops, did not differ in the incidence of Asian rust, powdery mildew and mildew, but for septoriosis and cercosporiosis, considered soybean late season diseases, seed origin is a determining fator.


2016 ◽  
Vol 26 (4) ◽  
pp. 332-341 ◽  
Author(s):  
Gajender Yadav ◽  
Richard H. Ellis

AbstractClimate change will alter rainfall patterns. The effect of rainfall during seed development and maturation on wheat (Triticum aestivum L.) seed quality (ability to germinate normally; air-dry longevity in hermetic storage at 40°C with c. 15% moisture content) was investigated in field experiments (2011, 2012) by providing rain shelter or simulating additional rainfall. High ability to germinate was detected from mid seed filling until after harvest maturity. Subsequent longevity was more sensitive to stage of development. It increased progressively, reaching maximum values during maturation drying at 53–56 days after anthesis (DAA), 5–11 (2011) or 8–14 (2012) days beyond mass maturity; maximal values were maintained thereafter in 2011; longevity declined with further delay to harvest in 2012. Post-anthesis protection from rain had no major effect: in later harvests longevity was slightly greater than the control in each year, but in 2011 wetting treatments were also superior to the control. Wetting ears at all stages of development reduced longevity immediately, but considerable recovery in subsequent longevity occurred when seeds re-dried in planta for several days. The greatest damage to longevity from ear wetting occurred with treatments at about 56 DAA, with poorest recovery at 70 DAA (i.e. around harvest maturity) in absolute terms but at 56–70 DAA relative to gross damage. Hence, seed quality in a strongly dormant wheat variety was resilient to rain. Net damage was greatest from rain late in maturation. The phase of seed quality improvement in planta was dynamic with deterioration also occurring then, but with net improvement overall.


2014 ◽  
Vol 36 (3) ◽  
pp. 273-281 ◽  
Author(s):  
Carolina Maria Gaspar de Oliveira ◽  
Francisco Carlos Kryzanowski ◽  
Maria Cristina Neves de Oliveira ◽  
José de Barros França-Neto ◽  
Ademir Assis Henning

The aim of this study was to evaluate the influence of pod wall permeability on the physiological quality of soybean seed. The cultivars studied were Sant'Ana, FT-2, FT-10, Bossier, Davis and the breeding line F 84-7-30, with a black seed coat. Pods were collected from plants at the R4, R5, R6, R7 and R8 development stages, which composed the treatments in regard to time of harvest. The parameters of permeability and the lignin content of the pods and the seeds within the pods were evaluated. The seeds were collected just after full maturity (R8), and the following tests were performed: germination, electrical conductivity, and tetrazolium, which determined seed viability and vigor. A randomized complete block design in a split-plot in time arrangement was used, with four replications per treatment. The soybean genotypes (six) composed the plots, and the split-plots consisted of the development stages (R4, R5, R6, R7 and R8). In seed evaluation, the same design was used, reducing the number of treatments to three in the split-plots (R6, R7 and R8). Pod permeability varied with the genotype and stage of development; this affected seed vigor, but not the viability of newly-harvested seeds. The pod lignin content did not show any influence on pod permeability.


1999 ◽  
Vol 9 (3) ◽  
pp. 335-340 ◽  
Author(s):  
David W. Still

Brassica crops have indeterminate growth and flower over an extended period of time. Harvested seed is therefore comprised of seed of varying degrees of physiological maturity and quality. Using population-based threshold models, broccoli (Brassica oleracea L. Group Italica), brussels sprouts (B. oleracea L. Group Gemmifera), red cabbage (B. oleracea L. Group Capitata), and rapeseed (B. napus L.) were characterized during seed development with respect to sensitivity to abiotic stress (reduced water potential) and shelf life. Using these models our data suggests that the physiological patterns of seed development are the same in all brassica crops we have tested to date. These population-based models can be used to provide a biological basis in which to evaluate cultural, postharvest and storage practices to ensure the production and maintenance of seed vigor.


1995 ◽  
Vol 75 (4) ◽  
pp. 821-829 ◽  
Author(s):  
L. Grass ◽  
J. S. Burris

Two wheat cultivars, Marzak and Oum-rabia, were subjected to three temperature regimes (20/15, 28/21, 36/29 °C) beginning 10 d after anthesis to maturity. As expected, high temperature resulted in low values of both seed yield and physical traits of seed quality. The effect of temperature on seed germination was not consistent among the two cultivars. High temperature during seed development and maturity had no effect on seed germination of Oum-rabia, whereas it decreased seed germination of Marzak. In contrast to seed germination, seed vigor was adversely affected by heat stress. This decline in seed vigor was reflected in reduced shoot and root dry weight, increased shoot/root ratio, reduced root length, low root number per seedling, and high seed conductivity. Excised embryo culture showed marked differences in the embryo growth potential. Although embryos from all treatments had germinated, a delay of 24–48 h was observed in the germination of embryos excised from seeds grown under high temperature conditions. Also, their shoot and radicle development over time lagged behind that of embryos isolated from seeds grown under cool temperature conditions. Exposing seeds to high temperature during development and maturity also resulted in low embryo oxygen uptake. Results presented in this study show that the growing conditions, in this instance temperature, of the parent plant affect the quality of its seed. Key words: Embryo, germination, oxygen uptake, vigor, wheat, high temperature


2016 ◽  
Vol 26 (1) ◽  
pp. 67-76 ◽  
Author(s):  
Richard H. Ellis ◽  
Gajender Yadav

AbstractPoor wheat seed quality in temperate regions is often ascribed to wet production environments. We investigated the possible effect of simulated rain during seed development and maturation on seed longevity in wheat (Triticum aestivum L.) cv. Tybalt grown in the field (2008, 2009) or a polythene tunnel house (2010). To mimic rain, the seed crops were wetted from above with the equivalent of 30 mm (2008, 2009) or 25 mm rainfall (2010) at different stages of seed development and maturation (17–58 DAA, days after 50% anthesis), samples were harvested serially, and subsequent air-dry seed longevity estimated. No pre-harvest sprouting occurred. Seed longevity (p50, 50% survival period in experimental hermetic storage at 40°C with c. 15% moisture content) in field-grown controls increased during seed development and maturation, attaining maxima at 37 (2008) or 44 DAA (2009); it declined thereafter. Immediate effects of simulated rain at 17–58 DAA in field studies (2008, 2009) on subsequent seed longevity were negative but small, e.g. a 1–4 d delay in seed quality improvement for treatments early in development, but with no damage detected at final harvests. In rainfall-protected conditions (2010), simulated rain close to harvest maturity (55–56 DAA) reduced longevity immediately and substantially, with greater damage from two sequential days of wetting than one; again, later harvests provided evidence of recovery in subsequent longevity. In the absence of pre-harvest sprouting, the potentially deleterious effects of rainfall to wheat seed crops on subsequent seed longevity may be reversible in full or in part.


1998 ◽  
Vol 123 (4) ◽  
pp. 692-699 ◽  
Author(s):  
David W. Still ◽  
Kent J. Bradford

With many seed crops, the most difficult production decision is when to harvest. In indeterminate crops such as Brassica species, early harvests result in immature seed of low vigor while late harvests risk seed deterioration and seed loss due to shattering. To provide a biological basis on which to determine harvest timing, we have characterized seed development in rape seed (Brassica napus L. `Weststar') and red cabbage (Brassica oleracea L. Group Capitata) using population-based hydrotime and ABA-time models. These models provide information relevant to assessing physiological maturity, and therefore, seed quality. The hydrotime and ABA-time models quantify germination rate, the uniformity of germination, viability, and the sensitivity of germination to water potential and ABA. Indices derived from these models, along with maximum germination and t50 values, were used to determine physiological maturity (maximum seed quality) of the seeds during development. The overall trends in seed development were similar in both species: as seeds matured, germination became more uniform and less sensitive to low Ψ and externally applied ABA. The models accurately described germination time courses and final germination percentages except for seeds imbibed at very high concentrations of ABA. In rape seed, physiological maturity was attained several days after maximum seed dry mass, while in red cabbage physiological maturity occurred at or after maximum seed dry mass. Vigor indices were correlated with easily discerned traits such as moisture content and silique phenotypic characteristics. The results of these experiments suggest that hydrotime and ABA-time models can be successfully used to provide a biological basis on which to determine harvest in brassicas.


2017 ◽  
Vol 38 (1) ◽  
pp. 57
Author(s):  
Daniele Piano Rosa ◽  
Danúbia Aparecida Costa Nobre ◽  
Diego Santos Oliveira ◽  
Francisco Charles dos Santos Silva ◽  
André Ricardo Gomes Bezerra ◽  
...  

This study aimed to assess the effect of genetic diversity on physiological quality of soybean seeds stored in cold chamber and under environmental conditions. Ten cultivars were assessed in a randomized factorial design (2x10). Factor 1 corresponded to two storage conditions and factor 2 to ten soybean cultivars, with four replications. The evaluated variables were total germination (G%), first count of germination (F%), percentage of abnormal seedlings (AS%), germination speed index (GSI), water content (WC), electrical conductivity (EC), dry matter of seedlings (DMS) and length of seedlings (LS). Data underwent ANOVA, followed by Scott Knott test, as well as multivariate analysis of genetic diversity. The results showed a higher physiological quality for seeds under cold storage. Half of the cultivars (FPS Júpiter, FPS Urano, FPS Antares, FPS Netuno and CD 250) presented high germination rates and seed vigor, being thus indicated as high-standard materials for further breeding programs. Besides that, storage environment had influence on the clustering of soybean cultivars. Moreover, cultivars had genetic dissimilarity for almost all assessed traits as G%, GSI, F%, AS%, EC, DMS and LS.


Sign in / Sign up

Export Citation Format

Share Document