Review of the longevity of the second polar body in the mouse

Zygote ◽  
2003 ◽  
Vol 11 (1) ◽  
pp. 23-34 ◽  
Author(s):  
Roland Bartholomeusz

The polar bodies are derived from meiotic divisions during oogenesis and are contained together with the oocyte within the zona pellucida. Fertilisation triggers the second meiotic division, at which time the second polar body (PB2) is formed (Hogan et al., 1986; Schatten et al., 1988; Johnson & Everitt, 1995) There is no clear evidence on the fate of the polar bodies in any mammal including the mouse, which is the commonly used research model. However, the polar bodies are generally considered as waste material, and therefore not essential to embryo development. In recent years the polar bodies have gained prominence as they have been used in humans for pre-implantation genetic diagnostic purposes (PGD), of single gene disorders, such as determining whether an embryo may have inherited the cystic fibrosis allele from its mother (Munne et al., 1995; Strom et al., 1998; Rechitsky et al., 2000). PB2 also has a potential use in cloning, for the harvesting of stem cells. Wakayama et al. (1997) have shown that PB2 has the same genetic potential as the female pronuclei and can be used for the production of normal offspring in mice. The successful use of PB2 for these purposes is dependent on its age, for its longevity, rate and nature of degeneration has yet to be determined. While there is little doubt that the first polar body (PB1) experiences a necrotic fate, the same cannot be said for PB2, which may experience an apoptotic fate. Furthermore if PB2 experiences an apoptotic fate rather than a necrotic one, it would not only be the earliest evidence of apoptosis in a mammal but also provide an excellent research model for the study of apoptosis.

1997 ◽  
Vol 62 (2) ◽  
pp. 182-187 ◽  
Author(s):  
Yury Verlinsky ◽  
Svetlana Rechitsky ◽  
Jeanine Cieslak, Victor Ivakhnenko ◽  
George Wolf ◽  
Aaron Lifchez ◽  
...  

1946 ◽  
Vol 7 (1) ◽  
pp. 91-121 ◽  
Author(s):  
Chr P. Raven

AbstractThe structure and physico-chemical composition of the egg of Limnaea stagnalis and the changes occurring during the uncleaved stage of the egg were studied by a variety of methods. A. Composition of egg: I. The cytoplasm of the egg consists of 2 parts: ectoplasm and endoplasm,which differ in their staining reactions. Immediately after oviposition, the ectoplasm occupies a sector at the vegetative pole of the egg, the endoplasm the rest of the egg. 2. Three sorts of granules can be distinguished: α-granules (probably mitochondria), β-granules and γ-granules. Moreover, fat droplets and Golgi bodies are present in the egg. 3. The α-granules, which are small, are accumulated especially in the endoplasm. Probably, glycogen, phenolases and peroxydases are bound in some way or other to these granules. 4. The β-granules, of medium size, form a major part of the ectoplasm. They consist of albumen and contain pentosenucleic acids. 5. The γ-granules are coarse, probably albuminous in nature; they lie mostly in the endoplasm. 6. Both fat droplets and Golgi bodies are distributed rather evenly in the cytoplasm, leaving free only the spindle and asters. "Praesubstances" and "Golgi systems" can be distinguished. 7. The hyaloplasm contains pentosenucleic acids in small quantity and, probably, bound sulfhydril components, especially in its central part. 8. The freshly laid egg contains the first maturation spindle in metaphase. The spindle area is free of fat droplets and Golgi bodies, but is characterized by the presence of free glutathion in reduced form. The chromosomes contain thymonucleic acid. B. Changes during uncleaved stage: 9. The course of the maturation divisions and the formation of the polar bodies are described. The egg shows amoeboid movements shortly after the extrusion of either of the polar bodies. This is accompanied with a distinct drop of the tension at the surface. 10. The α- and γ-granules of the endoplasm are attracted by the maturation spindle and asters, forming a halo surrounding the amphiaster. 11. The ectoplasm spreads beneath the egg cortex to the animal side. At first, a gap remains at the animal pole; after the completion of the maturation divisions, the ectoplasm surrounds the whole egg. 12. A fine chorion is formed, which lies inside the first, but outside the second polar body. 13. The spermastcr makes its appearance shortly before the extrusion of the first polar body; during the maturation divisions, it grows slowly. This is accompanied with a gradual rise of the viscosity of the protoplasm. No division of the spermaster with formation of an amphiaster takes place. 14. The sperm-head remains in a subcortical position till shortly after the extrusion of the second polar body; then, it migrates to the spermaster and develops into the male pronucleus. 15. The chromosomes left in the egg after the maturation divisions swell into karyomeres which fuse to the female pro-nucleus. 16. The copulation of the pronuclei takes place immediately beneath the egg cortex at the animal pole. 17. About one hour before cleavage, the animal pole plasm is formed by a local accumulation of substances attracted, probably, by the egg cortex at the animal pole. The centripetal flow of protoplasm in the dilating maturation aster may aid in this localisation process. Many α-granules are transported by it to the animal pole plasm. 18. From the time of oviposition till first cleavage the egg swells considerably, probably by the intake of water. This is accompanied with a decrease in density. At the same time, the γ-granules of the egg give rise to the formation of vacuoles, by an attraction of water from the neighbourhood. Eventually, the egg protoplasm has a vacuolated appearance throughout, with the exception of the animal pole plasm. 19. The viscosity, which is high one hour before cleavage, has a minimum 30 minutes later, then it rises again. The tension at the surface reaches a minimum immediately before the beginning of cleavage.


1966 ◽  
Vol 30 (3) ◽  
pp. 579-600 ◽  
Author(s):  
Luciano Zamboni ◽  
Daniel R. Mishell ◽  
James H. Bell ◽  
Manuel Baca

A penetrated ovum was recovered from the oviduct of a 33 year old surgical patient who had had sexual intercourse 26 hr before the operation. The ovum was in the pronuclear stage. The ooplasmic organelles were mainly represented by mitochondria, endoplasmic reticulum components, and Golgi elements. Small vesicles were found in the space between the two sheets of the pronuclear envelope. These vesicles appeared to be morphologically similar to the ER vesicles in the ooplasm and were considered to be involved in pronuclear development. Numerous annulate lamellae were seen in the ooplasm as well as in the pronuclei. Ooplasmic crystalloids were also observed. These were thought to represent cytoplasmic yolk. Remnants of the penetrating spermatozoon were found in close relation to one of the pronuclei. The fine structure of the first and second polar body is also described. The nuclear complement of the first polar body consisted of isolated chromosomes, whereas the second polar body contained a membrane-bounded nucleus. In consideration of the possibility that polar body fertilization may take place, these differences in nuclear organization could be of importance. Other recognizable differences between the two polar bodies were presence of dense cortical granules and microvilli in the first polar body, and absence of these structures in the second. These dissimilarities were considered to be related to the organization of the egg cytoplasm at the time of polar body separation.


Zygote ◽  
2012 ◽  
Vol 22 (1) ◽  
pp. 10-17 ◽  
Author(s):  
Dušan Fabian ◽  
Štefan Čikoš ◽  
Pavol Rehák ◽  
Juraj Koppel

SummaryThe extrusion and elimination of unnecessary gametic/embryonic material is one of the key events that determines the success of further development in all living organisms. Oocytes produce the first polar body to fulfill the maturation process just before ovulation, and release the second polar body immediately after fertilization. The aim of this study was to compile a physiological overview of elimination of polar bodies during early preimplantation development in mice. Our results show that three-quarters of the first polar bodies were lost even at the zygotic stage; the 4-cell stage embryos contained only one (second) polar body, and the elimination of second polar bodies proceeded continuously during later development. Both first and second polar bodies showed several typical features of apoptosis: phosphatidylserine redistribution (observed for the first time in the first polar body), specific DNA degradation, condensed nuclear morphology, and inability to exclude cationic dye from the nucleus during the terminal stage of the apoptotic process. Caspase-3 activity was recorded only in the second polar body. From the morphological point of view, mouse polar bodies acted very similarly to damaged embryonic cells which have lost contact with their neighboring blastomeres. In conclusion, polar bodies possess all the molecular equipment necessary for triggering and executing an active suicide process. Furthermore, similarly as in dying embryonic cells, stressing external conditions (culture in vitro) might accelerate and increase the incidence of apoptotic elimination of the polar bodies in embryos.


Development ◽  
1996 ◽  
Vol 122 (7) ◽  
pp. 1995-2003 ◽  
Author(s):  
G.L. Russo ◽  
K. Kyozuka ◽  
L. Antonazzo ◽  
E. Tosti ◽  
B. Dale

Using the fluorescent dye Calcium Green-dextran, we measured intracellular Ca2+ in oocytes of the ascidian Ciona intestinalis at fertilization and during progression through meiosis. The relative fluorescence intensity increased shortly after insemination in a single transient, the activation peak, and this was followed by several smaller oscillations that lasted for approximately 5 minutes (phase 1). The first polar body was extruded after the completion of the phase 1 transients, about 9 minutes after insemination, and then the intracellular calcium level remained at baseline for a period of 5 minutes (phase 2). At 14 minutes postinsemination a second series of oscillations was initiated that lasted 11 minutes (phase 3) and terminated at the time of second polar body extrusion. Phases 1 and 3 were inhibited by preloading oocytes with 5 mM heparin. Simultaneous measurements of membrane currents, in the whole-cell clamp configuration, showed that the 1–2 nA inward fertilization current correlated temporally with the activation peak, while a series of smaller oscillations of 0.1-0.3 nA amplitude were generated at the time of the phase 3 oscillations. Biochemical characterization of Maturation Promoting Factor (MPF) in ascidian oocytes led to the identification of a Cdc2-like kinase activity. Using p13suc1-sepharose as a reagent to precipitate the MPF complex, a 67 kDa (67 × 10(3) Mr) protein was identified as cyclin B. Histone H1 kinase activity was high at metaphase I and decreased within 5 minutes of insemination reaching a minimum level during phase 2, corresponding to telophase I. During phase 3, H1 kinase activity increased and then decayed again during telophase II. Oocytes preloaded with BAPTA and subsequently inseminated did not generate any calcium transients, nonetheless H1 kinase activity decreased 5 minutes after insemination, as in the controls, and remained low for at least 30 minutes. Injection of BAPTA during phase 2 suppressed the phase 3 calcium transients, and inhibited both the increase in H1 kinase activity normally encountered at metaphase II and second polar body extrusion.


Zygote ◽  
2006 ◽  
Vol 14 (2) ◽  
pp. 157-167 ◽  
Author(s):  
Mamiko Isaji ◽  
Hisataka Iwata ◽  
Hiroshi Harayama ◽  
Masashi Miyake

SummaryWe have shown that the assembly of lamin-associated polypeptide (LAP) 2β was detected surrounding the chromatin mass around the time of extrusion of the second polar body (PB) in some fertilized oocytes, but not in most activated oocytes, by using A23187 and cycloheximide (CaA + CH). Here, we immunohistologically analysed the correlation between LAP2β assembly and chromatin condensation in fertilized and activated oocytes during the second meiosis. In bovine cumulus cells, the onset of LAP2β assembly was observed around anaphase chromosomes with strongly phosphorylated histone H3. No LAP2β assembled around the chromosomes in the first and second polar bodies and the alternative oocyte chromatin (oCh) if histone H3 was phosphorylated. Only histone H3 of oCh was completely dephosphorylated during the telophase II/G1 transition (Tel II/G1), and then LAP2β assembled around only the oCh without phosphorylated histone H3. In the oocytes activated by CaA + CH, LAP2β did not assemble around the condensed oCh during the Tel II/G1 transition, although their histone H3 dephosphorylation occurred rather rapidly compared with that of the fertilized oocytes. The patterns of histone H3 dephosphorylation and LAP2β assembly in oocytes activated by CaA alone showed greater similarity to those in fertilized oocytes than to those in oocytes activated by CaA + CH. These results show that LAP2β assembles around only oCh after complete dephosphorylation of histone H3 after fertilization and activation using CaA alone, and that the timing of histone H3 dephosphorylation and LAP2β assembly in these oocytes is different from that of somatic cells. The results also indicate that CH treatment inhibits LAP2β assembly around oCh but not histone H3 dephosphorylation.


2007 ◽  
Vol 28 (1) ◽  
pp. 62-64 ◽  
Author(s):  
F. Fiorentino ◽  
A. Biricik ◽  
A. Nuccitelli ◽  
R. De Palma ◽  
S. Kahraman ◽  
...  

2015 ◽  
Vol 27 (1) ◽  
pp. 121 ◽  
Author(s):  
Y. M. Toishibekov ◽  
R. K. Tursunova ◽  
M. Sh. Yermekova

Advances in reproduction technologies, such as in vitro maturation, IVF, and in vitro culture, stimulated research for efficient cryopreservation techniques for mammalian oocytes. It is well known that the oocyte is the largest cell of an animal's body and as such, is full of water and, in many species, fat, making it difficult to cryopreserve. The objective of this work was to study the effect of vitrification for cryopreservation of the metaphase II plate (MPII) of sheep oocytes. Ovaries from 20 ewes of Kazakh Arkharo-Merino breed were acquired after slaughter and maintained at 37°C in TCM-199. The maturation medium was TCM-199, containing 1 mM of glutamine, 10% FBS, 5 μg mL–1 FSH, 5 μg mL–1 LH, 1 μg mL–1 oestradiol, 0.3 mM sodium pyruvate, and 100 mM cysteamine. The oocytes were incubated in 400 μL of medium in 4-well dishes covered with mineral oil. The IVM conditions were 5% CO2 in humidified air at 39°C for 24 h. Then they were placed for 10 min in a media with Hoechst 33342 (3 μg mL–1) and cytochalasin B (7 μg mL–1) to facilitate the enucleation of the MPII with a minimum volume of ooplasm. The MPII plates were divided into 2 groups: the vitrification group was exposed to vitrification media containing 1.12 M ethylene glycol (ET) + 0.87 M ME2SO for 5 min and was exposed in vitrification media containing 2.24 M ET + 1.75 M ME2SO for 5 min, and then in vitrification solution containing 4.48 M ET + 40% ME2SO + 0.25 M sucrose for 30 s. Oocytes were loaded into cryoloop and plunged into liquid nitrogen (LN2). Oocytes were thawed in a 25°C water bath and then placed in TCM-199 at 20% fetal bovine serum. After 15 min of incubation the oocytes were activated for extrusion of the second polar body in 1 mg mL–1 Ca ionophore for 5 min and washed for 5 min followed by 4 h in 6-DMAP (0.12 mM) + cycloheximide (0.6 μg mL–1). After activation the MPII were washed and cultured for 20 h. The control group received the same treatment, but they were not vitrified. Differences between the experimental groups were tested using Chi-squared test. Our research showed the expulsion of the second polar body after activation was observed in more than 62.2% of the MPII that were not vitrified (control group), whereas 40.5% of vitrified plates had expulsion of polar bodies (P < 0.05). These preliminary studies showed that it is possible to vitrify MPII plates. On the other hand, the drastic reduction of the volume of the sheep oocytes might make cryopreservation possible with greater efficiency.


Zygote ◽  
1995 ◽  
Vol 3 (4) ◽  
pp. 283-288 ◽  
Author(s):  
Mina Alikani ◽  
Gianpiero Palermo ◽  
Alexis Adler ◽  
Massimo Bertoil ◽  
Marlena Blake ◽  
...  

SummaryFertilisation and development of dysmorphic human oocytes recovered from hyperstimulated ovaries have been evaluated following intracytoplasmic sperm injection (ICSI) for treatment of male infertility. A total of 2968 oocytes at metaphase II of meiosis were injected, of which 806 (27.2%) were dysmorphic at the light microscopic level. Cytoplasmic abnormalities included granularity, areas of necrosis, organelle clustering, vacuoles, and accumulating saccules of smooth endoplasmic reticulum. Anomalies of the first polar body and zona pellucida, as well as non-spherical shapes of oocytes, were also noted. Contrary to previous findings linking some dysmorphisms to non-assisted fertilisation failure, in this study no single abnormality led to a reduction in the fertilisation rate, nor was fertilisation compromised in oocytes with multiple abnormalities. The incidence of normal fertilisation (two pronuclei and two polar bodies) was 69% in both the dysmorphic and non-dysmorphic oocytes. While overall pregnancy and implantation results were not altered in the group of patients (n = 242) in whom at least one dysmorphic oocyte was injected, exclusive replacement of embryos which originated from dysmorphic oocytes led to a higher incidence of early pregnancy loss. It is concluded that aberrations in the morphology of human oocytes – most probably a product of controlled ovarian stimulation – are of little or no consequence to fertilisation or early cleavage after ICSI. It is possible, however, that these embryos have a reduced potential for implantation and further development.


1913 ◽  
Vol s2-59 (233) ◽  
pp. 133-174
Author(s):  
J. P. HILL ◽  
CHAS. H. O'DONOGHUE

Dasyurus is monœstrous and has one breeding season a year, which begins at the end of May or early in June and lasts into the first fortnight in August (i.e. it extends over the winter months). The male does not appear to experience a marked rutting season. Copulation is similar to that of Didelphys (Selenka), and the sperms can remain alive in the Fallopian tubes for at least two weeks. Anœtrus.--The anœstral period lasts more than half the year. Pro-œstrus.--Pro-œstrus appears to extend over a varying period of from four to twelve days. During this time, the lips of the cloaca become swollen, the pouch enlarges somewhat and becomes slightly tumid and moist, and the Graafian follicles increase in size and become vesicular. The uterine mucosa increases in thickness and becomes more vascular, its glands lengthen and become convoluted and the uterine epithelium also tends to thicken. Œstrus.--Œstrus lasts usually for one or two days and is the period during which copulation occurs. The changes already initiated during pro-oestrus in the various parts of the reproductive system are continued without interruption. Post-œstrus.--Post-œstrus, which term we employ to designate the period following œstrus and terminated by ovulation, occupies as a rule about five or six days. The tumidity of the cloacal lips disappears, but the changes in the pouch and uterus still continue, not, however, very actively. In the ovary (1) the ova give off the first polar body and the spindle for the second meiotic division is formed. (2) The follicles attain maturity and ultimately rupture, setting free the ova. Ovulation.--Ovulation marks the end of this period and occurs generally about five or six days after cestrus. It is spontaneous and independent of copulation and is remarkable because of the large number of ova liberated. Ovulation is succeeded (a) by pregnancy or (b) by pseudo-pregnancy. Pregnancy.--Fertilisation is effected in the upper part of the Fallopian tube and the second polar body is there given off. As a rule more young are born than can possibly survive owing to the limited accommodation in the pouch. The gestation period is not less than eight and not more than fourteen days, but the interval between copulation and birth is usually considerably longer. Corpora lutea are formed and persist throughout the greater part of the time that the animal is lactating. Nursing Period.--This period may be divided into two phases. (1) Period of Fixation.--A period, lasting for seven or eight weeks, during which the young are firmly attached to the teats. (2) Free Period.--A period of eight or nine weeks when the young are free in the pouch but dependent on the mother for food. After this time the various organs gradually return to a state of rest. Pseudo-pregnancy.--We have applied this term to the period following ovulation iu cases where the ova have failed to develop, because of the occurrence in it of a series of changes in the reproductive organs essentially identical with those met with in pregnant females. Corpora lutea are formed in the ovaries which are identical with those in the pregnant female. The pouch enlarges, and its sweat and sebaceous glands reach a state of hypertrophy and functional activity comparable to that in the pregnant female. The mammary glands also enlarge and reach a state of development equal to that in a female thirty-six hours after parturition. The uteri enlarge and become vascular, often to a marked degree. The uterine mucosa undergoes a series of changes, progressive, regressive and regenerative. Metœstrus.--This is an indefinite period during which the whole of the reproductive organs return to a state of rest.


Sign in / Sign up

Export Citation Format

Share Document