A Clinical Overview of Cholinesterase Inhibitors in Alzheimer's Disease

2002 ◽  
Vol 14 (S1) ◽  
pp. 93-126 ◽  
Author(s):  
Martin Farlow

This review provides an overview of the three most widely used cholinesterase (ChE) inhibitors: donepezil, rivastigmine, and galantamine. Differences in pharmacologic profiles will be discussed, and consideration will be given to how such differences may relate to and influence the clinical efficacy and tolerability of the various agents. In addition to providing cognitive benefits in patients with Alzheimer's disease (AD), growing clinical evidence also suggests that ChE inhibitors can produce favorable and clinically relevant effects on neuropsychiatric/behavioral disturbances and activities of daily living. Furthermore, recent data indicate that these agents may be effective at all levels of disease severity and for all rates of disease progression. The clinical utility of ChE inhibitors in a wider spectrum of dementias which share a common cholinergic deficit, such as Lewy body dementia, Parkinson's disease dementia, and vascular dementia, is currently under investigation. Beyond symptomatic relief, data suggest that ChE inhibitors may also slow the underlying disease process. As clinical and research experience with these agents continues to accumulate, the differences in their effects will become more apparent and will help physicians tailor ChE inhibition treatment to the needs of the individual patient.

Author(s):  
B. Lynn Beattie

In the era of chronic disease, we are challenged to find therapies that provide symptomatic relief and ideally, alter the course of the underlying disease. In Alzheimer's disease (AD), these issues are complicated by the disease itself, which affects the subject's decision-making capacity for participation in the research. According to established ethical guidelines it is clear that individuals with impaired capacity may participate in research and their risk should be no greater than that which the individual would have in day to day activities with anticipation of benefits within that realm. Decision making processes are complex and involve proxies who themselves have biases about their loved one and the potential for participating in the research. Newer disease-modifying approaches such as immunotherapy have potential for affecting the course of the underlying disease but with greater risk of more significant side effects. Ideally the health care of the subjects is not disadvantaged by research participation. At the same time, trials of potentially riskier therapy are relevant in subjects with the disease. Research for subjects with AD must have appropriate safeguards in place to enable effective progress in innovative therapy for a vulnerable, often elderly population. Recommendations are made which could further our capacity to undertake ethical research in the AD population.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S1) ◽  
pp. 11-14
Author(s):  
Jeffrey L. Cummings

AbstractWe appear to be on the brink of a new epoch of treatment for Alzheimer's disease. Compelling evidence suggests that Aβ42 secretion is the triggering event in the pathogenesis of Alzheimer's disease, and that tau aggregation may be an important secondary event linked to neurodegeneration. Prophylactic administration of anti-amyloid agents designed to prevent Aβ accumulation in persons with subclinical disease is likely to be more effective than therapeutic interventions in established Alzheimer's disease. Drug development programs in Alzheimer's disease focus primarily on agents with anti-amyloid disease-modifying properties, and many different pharmacologic approaches to reducing amyloid pathology and tauopathy are being studied. Classes of therapeutic modalities currently in advanced-stage clinical trial testing include forms of immunotherapy (active β -amyloid immunoconjugate and human intravenous immunoglobulin), a γ-secretase inhibitor, the selective Aβ42-lowering agent R-flurbiprofen, and the anti-aggregation agent tramiprosate. Non-traditional dementia therapies such as the HMG-CoA reductase inhibitors (statins), valproate, and lithium are now being assessed for clinical benefit as anti-amyloid disease-modifying treatments. Positive findings of efficacy and safety from clinical studies are necessary but not sufficient to demonstrate that a drug has disease-modifying properties. Definitive proof of disease-modification requires evidence from validated animal models of Alzheimer's disease; rigorously controlled clinical trials showing a significantly improved, stabilized, or slowed rate of decline in cognitive and global function compared to placebo; and prospectively obtained evidence from surrogate biomarkers that the treatment resulted in measurable biological changes associated with the underlying disease process.


2019 ◽  
Vol 216 (1) ◽  
pp. 43-48 ◽  
Author(s):  
Audun Osland Vik-Mo ◽  
Lasse Melvaer Giil ◽  
Miguel Germán Borda ◽  
Clive Ballard ◽  
Dag Aarsland

IntroductionUnderstanding the natural course of neuropsychiatric symptoms (NPS) in dementia is important for planning patient care and trial design, but few studies have described the long-term course of NPS in individuals.MethodPrimary inclusion of 223 patients with suspected mild dementia from general practice were followed by annual assessment, including the Neuropsychiatric Inventory (NPI), for up to 12 years. Total and item NPI scores were classified as stable, relapsing, single episodic or not present based on 4.96 (s.d. 2.3) observations (98% completeness of longitudinal data) for 113 patients with Alzheimer's disease and 84 patients with LBD (68 dementia with Lewy bodies and 16 Parkinson's disease dementia).ResultsWe found that 80% had stable NPI total ≥1, 50% had stable modest NPI total ≥12 and 25% had stable NPI total ≥24 scores. Very severe NPS (≥48) were mostly single episodes, but 8% of patients with Alzheimer's disease had stable severe NPS. Patients with Alzheimer's disease and the highest 20% NPI total scores had a more stable or relapsing course of four key symptoms: aberrant motor behaviour, aggression/agitation, delusions and irritability (odds ratio 55, P < 0.001). This was not seen in LBD. Finally, 57% of patients with Alzheimer's disease and 84% of patients with LBD had reoccurring psychotic symptoms.ConclusionsWe observed a highly individual course of NPS, with most presenting as a single episode or relapsing; a stable course was less common, especially in LBD. These findings demonstrate the importance of an individualised approach (i.e. personalised medicine) in dementia care.


2002 ◽  
Vol 14 (S1) ◽  
pp. 27-49 ◽  
Author(s):  
George T. Grossberg

Behavioral and psychological symptoms of dementia (BPSD) are a common manifestation of Alzheimer's disease (AD) and other dementia syndromes. Patients experience prominent and multiple symptoms, which are both distressing and a source of considerable social, health, and economic cost. Development of symptoms is in part related to progressive neurodegeneration and cholinergic deficiency in brain regions important in the regulation of behavioral and emotional responses including the cortex, hippocampus, and limbic system. Cholinesterase (ChE) inhibitors offer a mechanism-based approach to therapy to enhance endogenous cholinergic neurotransmission. Studies using ChE inhibitors have demonstrated their clear potential to improve or stabilize existing BPSD. Differences have been noted between selective acetylcholinesterase (AChE) inhibitors (donepezil and galantamine) and dual ChE inhibitors (rivastigmine) in terms of treatment response. While donepezil has shown efficacy in moderate to severe noninstitutionalized AD patients, conflicting results have been obtained in mild to moderate patients and in nursing home patients. Galantamine has been shown to delay the onset of BPSD during a five-month study but has been otherwise poorly studied to-date. Both donepezil and galantamine have not as yet demonstrated efficacy in reducing psychotic symptoms or in reducing levels of concomitant psychotropic medication use. Studies with the dual ChE inhibitor rivastigmine in mild to moderately severe AD and in Lewy body dementia (LBD) have shown improvements in behavioral symptoms including psychosis. Improvements have been maintained over a period of up to two years. In addition, institutionalized patients with severe AD have shown symptomatic benefits with a reduction in the requirement for additional psychotropic drugs following treatment with rivastigmine. The psychotropic properties associated with rivastigmine may in part be mediated through effects on butyrylcholinesterase. Current treatment options are limited for patients with dementia syndromes other than AD. However, data concerning rivastigmine in patients with LBD and preliminary studies in Parkinson's disease dementia and vascular dementia suggest a role for ChE inhibitors across the spectrum of dementia syndromes. Finally, studies that incorporated a delayed start design demonstrate that ChE inhibitors may delay the progression of BPSD.


Author(s):  
Krishna Chinthapalli

Pharmacological treatment of Alzheimer’s disease is an important part of management of the condition. There are only four drugs available for treatment of the disease and none halt the disease process, however they have a benefit on cognition, behaviour, activities of daily living, and global function. Acetylcholinesterase inhibitors are thought to work by enhancing cholinergic transmission in the brain and are particularly effective in mild and moderate AD, with recent evidence suggesting donepezil is also effective in severe AD. Memantine is the only glutamate antagonist that is available for AD and is limited for use in moderate or severe AD. The choice of drug depends on route of administration, adverse effects, and medical comorbidities. There is intense research on alternative treatments especially those that may stop the underlying disease process.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S1) ◽  
pp. 2-3 ◽  
Author(s):  
Gary J. Kennedy

AbstractWe appear to be on the brink of a new epoch of treatment for Alzheimer's disease. Compelling evidence suggests that Aβ secretion is the triggering event in the pathogenesis of Alzheimer's disease, and that tau aggregation may be an important secondary event linked to neurodegeneration. Prophylactic administration of anti-amyloid agents designed to prevent Aβ accumulation in persons with subclinical disease is likely to be more effective than therapeutic interventions in established Alzheimer's disease. Drug development programs in Alzheimer's disease focus primarily on agents with anti-amyloid disease-modifying properties, and many different pharmacologic approaches to reducing amyloid pathology and tauopathy are being studied. Classes of therapeutic modalities currently in advanced-stage clinical trial testing include forms of immunotherapy (active β-amyloid immunoconjugate and human intravenous immunoglobulin), a γ-secretase inhibitor, the selective Aβ42-lowering agent R-flurbiprofen, and the anti-aggregation agent tramiprosate. Non-traditional dementia therapies such as the HMG-CoA reductase inhibitors (statins), valproate, and lithium are now being assessed for clinical benefit as anti-amyloid disease-modifying treatments. Positive findings of efficacy and safety from clinical studies are necessary but not sufficient to demonstrate that a drug has disease-modifying properties. Definitive proof of disease-modification requires evidence from validated animal models of Alzheimer's disease; rigorously controlled clinical trials showing a significantly improved, stabilized, or slowed rate of decline in cognitive and global function compared to placebo; and prospectively obtained evidence from surrogate biomarkers that the treatment resulted in measurable biological changes associated with the underlying disease process.


2012 ◽  
Vol 24 (S1) ◽  
pp. S10-S17 ◽  
Author(s):  
Harald Hampel

ABSTRACTThe development of therapies for Alzheimer's disease (AD) presents numerous challenges for physicians, researchers, and the pharmaceutical industry, with many drug candidates showing promise at one stage of clinical research only to fall at the next hurdle. A great number of drugs with a variety of targets and clusters of mechanisms are currently in various stages of basic and clinical investigation. However, these hypothesis-derived agents may be tested much too late in the chronically progressive disease process to demonstrate meaningful effects or outcomes, mirroring the clinical syndromal scenario in which the underlying pathophysiological disease condition is frequently diagnosed extremely late. Moreover, the complexity of the disease calls for developments and improvements in study designs and methods modeled for different target populations and disease stages (e.g. asymptomatic to prodromal to syndromal). New integrated concepts and models of disease pathophysiology, use of validated and qualified biomarkers, outcomes and endpoints, particularly the development of a surrogate outcome, may allow targeting of characteristic mechanism-derived therapies of specifically affected biological systems at different time-points in the disease process, providing increasing opportunities for early and preventative intervention. A core set of feasible diagnostic and predictive biomarkers is already validated and in the process of standardization; however, continued and intensified research efforts will likely reveal a variety of novel biomarkers that grasp the complexity of the underlying disease process. In the future, trials of drugs to modify and prevent AD may embrace enrichment strategies and maybe be stratified by disease stage, genetic factors as well as by disease endophenotypes.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S1) ◽  
pp. 4-6 ◽  
Author(s):  
Todd E. Golde

AbstractWe appear to be on the brink of a new epoch of treatment for Alzheimer's disease. Compelling evidence suggests that Aβ42 secretion is the triggering event in the pathogenesis of Alzheimer's disease, and that tau aggregation may be an important secondary event linked to neurodegeneration. Prophylactic administration of anti-amyloid agents designed to prevent Aβ accumulation in persons with subclinical disease is likely to be more effective than therapeutic interventions in established Alzheimer's disease. Drug development programs in Alzheimer's disease focus primarily on agents with anti-amyloid disease-modifying properties, and many different pharmacologic approaches to reducing amyloid pathology and tauopathy are being studied. Classes of therapeutic modalities currently in advanced-stage clinical trial testing include forms of immunotherapy (active β-amyloid immunoconjugate and human intravenous immunoglobulin), a γ-secretase inhibitor, the selective Aβ42-lowering agent R-flurbiprofen, and the anti-aggregation agent tramiprosate. Non-traditional dementia therapies such as the HMG-CoA reductase inhibitors (statins), valproate, and lithium are now being assessed for clinical benefit as anti-amyloid disease-modifying treatments. Positive findings of efficacy and safety from clinical studies are necessary but not sufficient to demonstrate that a drug has disease-modifying properties. Definitive proof of disease-modification requires evidence from validated animal models of Alzheimer's disease; rigorously controlled clinical trials showing a significantly improved, stabilized, or slowed rate of decline in cognitive and global function compared to placebo; and prospectively obtained evidence from surrogate biomarkers that the treatment resulted in measurable biological changes associated with the underlying disease process.


CNS Spectrums ◽  
2007 ◽  
Vol 12 (S1) ◽  
pp. 7-10 ◽  
Author(s):  
Pierre N. Tariot

AbstractWe appear to be on the brink of a new epoch of treatment for Alzheimer's disease. Compelling evidence suggests that Aβ42 secretion is the triggering event in the pathogenesis of Alzheimer's disease, and that tau aggregation may be an important secondary event linked to neurodegeneration. Prophylactic administration of anti-amyloid agents designed to prevent Aβ accumulation in persons with subclinical disease is likely to be more effective than therapeutic interventions in established Alzheimer's disease. Drug development programs in Alzheimer's disease focus primarily on agents with anti-amyloid disease-modifying properties, and many different pharmacologic approaches to reducing amyloid pathology and tauopathy are being studied. Classes of therapeutic modalities currently in advanced-stage clinical trial testing include forms of immunotherapy (activeβ-amyloid immunoconjugate and human intravenous immunoglobulin), a γ-secretase inhibitor, the selective Aβ42-lowering agent R-flurbiprofen, and the anti-aggregation agent tramiprosate. Non-traditional dementia therapies such as the HMG-CoA reductase inhibitors (statins), valproate, and lithium are now being assessed for clinical benefit as anti-amyloid disease-modifying treatments. Positive findings of efficacy and safety from clinical studies are necessary but not sufficient to demonstrate that a drug has disease-modifying properties. Definitive proof of disease-modification requires evidence from validated animal models of Alzheimer's disease; rigorously controlled clinical trials showing a significantly improved, stabilized, or slowed rate of decline in cognitive and global function compared to placebo; and prospectively obtained evidence from surrogate biomarkers that the treatment resulted in measurable biological changes associated with the underlying disease process.


2010 ◽  
Vol 15 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Sridhar Krishnamurti

Alzheimer's disease is neurodegenerative disorder which affects a growing number of older adults every year. With an understanding of auditory dysfunction in Alzheimer's disease, the speech-language pathologist working in the health care setting can provide better service to these individuals. The pathophysiology of the disease process in Alzheimer's disease increases the likelihood of specific types of auditory deficits as opposed to others. This article will discuss the auditory deficits in Alzheimer's disease, their implications, and the value of clinical protocols for individuals with this disease.


Sign in / Sign up

Export Citation Format

Share Document