Viral Quasispecies and Lethal Mutagenesis

2016 ◽  
Vol 24 (1) ◽  
pp. 39-48 ◽  
Author(s):  
Esteban Domingo ◽  
Celia Perales

Virology has undergone a profound transformation with the incorporation of quasispecies theory to the understanding of the composition and dynamics of viral populations as they cause disease. RNA viral populations do not consist of a genome class with a defined nucleotide sequence but of a cloud or swarm or related mutants due to high mutation rates (number of incorrect nucleotides introduced per nucleotide copied) during replication. DNA and RNA viruses whose multiplication is catalysed by a low fidelity polymerase replicate close to an error threshold for maintenance of their genetic information. This means that modest increases in mutation rate jeopardize their genetic stability. Realization of this important corollary of quasispecies theory has opened new approaches to combating viral disease. One of these approaches is lethal mutagenesis that consists of forcing virus extinction by an excess of mutations evoked by virus-specific mutagenic agents. This article summarizes the origin and current status of this new antiviral approach.

2017 ◽  
Author(s):  
Matthew D. Pauly ◽  
Daniel M. Lyons ◽  
Adam S. Lauring

AbstractLethal mutagenesis is a broad-spectrum antiviral strategy that employs mutagenic nucleoside analogs to exploit the high mutation rate and low mutational tolerance of many RNA viruses. Studies of mutagen-resistant viruses have identified determinants of replicative fidelity and the importance of mutation rate to viral population dynamics. We have previously demonstrated the effective lethal mutagenesis of influenza virus using three nucleoside analogs as well as the virus’s high genetic barrier to mutagen resistance. Here, we investigate the mutagen-resistant phenotypes of mutations that were enriched in drug-treated populations. We find that PB1 T123A has higher replicative fitness than the wild type, PR8, and maintains its level of genome production during 5-fluorouracil treatment. Surprisingly, this mutagen-resistant variant also has an increased baseline rate of C to U and G to A mutations. A second drug-selected mutation, PA T97I, interacts epistatically with PB T123A to mediate high-level mutagen resistance, predominantly by limiting the inhibitory effect of nucleosides on polymerase activity. Consistent with the importance of epistatic interactions in the influenza polymerase, we find that nucleoside analog resistance and replication fidelity are strain dependent. Two previously identified ribavirin-resistance mutations, PB1 V43I and PB1 D27N, do not confer drug resistance in the PR8 background, and the PR8-PB1 V43I polymerase exhibits a normal baseline mutation rate. Our results highlight the genetic complexity of the influenza virus polymerase and demonstrate that increased replicative capacity is a mechanism by which an RNA virus can counter the negative effects of elevated mutation rates.ImportanceRNA viruses exist as genetically diverse populations. This standing genetic diversity gives them the potential to adapt rapidly, evolve resistance to antiviral therapeutics, and evade immune responses. Viral mutants with altered mutation rates or mutational tolerance have provided insights into how genetic diversity arises and how it affects the behavior of RNA viruses. To this end, we identified variants within the polymerase complex of influenza virus that are able tolerate drug-mediated increases in viral mutation rates. We find that drug resistance is highly dependent on interactions among mutations in the polymerase complex. In contrast to other viruses, influenza virus counters the effect of higher mutation rates primarily by maintaining high levels of genome replication. These findings suggest the importance of maintaining large population sizes for viruses with high mutation rates and show that multiple proteins can affect both mutation rate and genome synthesis.


2019 ◽  
Author(s):  
Stéphane Aris-Brosou ◽  
Louis Parent ◽  
Neke Ibeh

AbstractViruses are known to have some of the highest and most diverse mutation rates found in any biological replicator, topped by single-stranded (ss) RNA viruses, while double-stranded (ds) DNA viruses have rates approaching those of bacteria. As mutation rates are tightly and negatively correlated with genome size, selection is a clear driver of viral evolution. However, the role of intragenomic interactions as drivers of viral evolution is less well documented. To understand how these two processes affect viral evolution, we systematically surveyed ssRNA, ssDNA, dsRNA, and dsDNA viruses, to find which virus type and which functions show evidence for episodic diversifying selection and correlated evolution. We show that while evidence for selection is mostly found in single stranded viruses, and correlated evolution is more prevalent in DNA viruses, the genes that are affected by both processes are involved in key aspects of their life cycle, favoring viral stability over proliferation. We further show that both evolutionary processes are intimately linked at the amino acid level, which suggests that selection alone does not explain the whole evolutionary —and epidemiological— potential of viruses.


2017 ◽  
Author(s):  
Joan Forners ◽  
J. Tomás Lázaro ◽  
Tomás Alarcón ◽  
Santiago F. Elena ◽  
Josep Sardanyés

Positive-sense, single-stranded RNA viruses are important pathogens infecting almost all types of organisms. Experimental evidences from mutant distributions and amplification kinetics of viral RNA suggest that these pathogens may follow different RNA replication modes, ranging from the stamping machine replication (SMR) to the geometric replication (GR) modes. Despite previous theoretical works have focused on the evolutionary dynamics of RNA viruses amplifying their genomes with different strategies, few is known in terms of the bifurcations and transitions involving error thresholds (mutation-induced dominance of mutants) and lethal mutagenesis (mutation-induced extinction of all sequences). Here we analyze a dynamical system describing the intracellular amplification of viral RNA genomes evolving on a single-peak fitness landscape focusing on three cases considering neutral, deleterious, and lethal mutants spectra. In our model, the different replication modes are introduced with parameter α: with α ≳ 0 for the SMR and α = 1 for the GR. We analytically derive the critical mutation rates causing lethal mutagenesis and error catastrophe, governed by transcritical bifurcations that depend on parameters α, k1 (replicative fitness of mutants), and on the spontaneous degradation rates of the sequences, ϵ. For the lethal case the critical mutation rate involving lethal mutagenesis is . Here, the SMR involves lower critical mutation rates, being the system more robust to lethal mutagenesis replicating closer to the GR mode. This result is also found for the neutral and deleterious cases, but for these later cases lethal mutagenesis can shift to the error catastrophe once the replication mode surpasses a threshold given by .


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Armando Arias ◽  
Lucy Thorne ◽  
Ian Goodfellow

Lethal mutagenesis has emerged as a novel potential therapeutic approach to treat viral infections. Several studies have demonstrated that increases in the high mutation rates inherent to RNA viruses lead to viral extinction in cell culture, but evidence during infections in vivo is limited. In this study, we show that the broad-range antiviral nucleoside favipiravir reduces viral load in vivo by exerting antiviral mutagenesis in a mouse model for norovirus infection. Increased mutation frequencies were observed in samples from treated mice and were accompanied with lower or in some cases undetectable levels of infectious virus in faeces and tissues. Viral RNA isolated from treated animals showed reduced infectivity, a feature of populations approaching extinction during antiviral mutagenesis. These results suggest that favipiravir can induce norovirus mutagenesis in vivo, which in some cases leads to virus extinction, providing a proof-of-principle for the use of favipiravir derivatives or mutagenic nucleosides in the clinical treatment of noroviruses.


2021 ◽  
Vol 166 (4) ◽  
pp. 1203-1211
Author(s):  
Caio Bidueira Denani ◽  
Antonio Real-Hohn ◽  
Carlos Alberto Marques de Carvalho ◽  
Andre Marco de Oliveira Gomes ◽  
Rafael Braga Gonçalves

AbstractLactoferrin is part of the innate immune system, with antiviral activity against numerous DNA and RNA viruses. Rhinoviruses, the leading cause of the common cold, are associated with exacerbation of respiratory illnesses such as asthma. Here, we explored the effect of bovine lactoferrin (BLf) on RV-B14 infectivity. Using different assays, we show that the effect of BLf is strongest during adhesion of the virus to the cell and entry. Tracking the internalisation of BLf and virus revealed a degree of colocalisation, although their interaction was only confirmed in vitro using empty viral particles, indicating a possible additional influence of BLf on other infection steps.


2019 ◽  
Vol 20 (12) ◽  
pp. 2931 ◽  
Author(s):  
Zhiqing Li ◽  
Ping Zhao ◽  
Qingyou Xia

Epigenetic modifications on individual bases in DNA and RNA can encode inheritable genetic information beyond the canonical bases. Among the nucleic acid modifications, DNA N6-methadenine (6mA) and RNA N6-methyladenosine (m6A) have recently been well-studied due to the technological development of detection strategies and the functional identification of modification enzymes. The current findings demonstrate a wide spectrum of 6mA and m6A distributions from prokaryotes to eukaryotes and critical roles in multiple cellular processes. It is interesting that the processes of modification in which the methyl group is added to adenine and adenosine are the same, but the outcomes of these modifications in terms of their physiological impacts in organisms are quite different. In this review, we summarize the latest progress in the study of enzymes involved in the 6mA and m6A methylation machinery, including methyltransferases and demethylases, and their functions in various biological pathways. In particular, we focus on the mechanisms by which 6mA and m6A regulate the expression of target genes, and we highlight the future challenges in epigenetic regulation.


2021 ◽  
Author(s):  
Rajan Saha Raju ◽  
Abdullah Al Nahid ◽  
Preonath Shuvo ◽  
Rashedul Islam

AbstractTaxonomic classification of viruses is a multi-class hierarchical classification problem, as taxonomic ranks (e.g., order, family and genus) of viruses are hierarchically structured and have multiple classes in each rank. Classification of biological sequences which are hierarchically structured with multiple classes is challenging. Here we developed a machine learning architecture, VirusTaxo, using a multi-class hierarchical classification by k-mer enrichment. VirusTaxo classifies DNA and RNA viruses to their taxonomic ranks using genome sequence. To assign taxonomic ranks, VirusTaxo extracts k-mers from genome sequence and creates bag-of-k-mers for each class in a rank. VirusTaxo uses a top-down hierarchical classification approach and accurately assigns the order, family and genus of a virus from the genome sequence. The average accuracies of VirusTaxo for DNA viruses are 99% (order), 98% (family) and 95% (genus) and for RNA viruses 97% (order), 96% (family) and 82% (genus). VirusTaxo can be used to detect taxonomy of novel viruses using full length genome or contig sequences.AvailabilityOnline version of VirusTaxo is available at https://omics-lab.com/virustaxo/.


2018 ◽  
Vol 33 (6) ◽  
pp. 472-483 ◽  
Author(s):  
Alfred Niyokwishimira ◽  
Yongxi Dou ◽  
Bang Qian ◽  
Prajapati Meera ◽  
Zhidong Zhang

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Leonardo D’Aiuto ◽  
James McNulty ◽  
Caroll Hartline ◽  
Matthew Demers ◽  
Raj Kalkeri ◽  
...  

2016 ◽  
Vol 283 (1841) ◽  
pp. 20161785 ◽  
Author(s):  
Long Wang ◽  
Yanchun Zhang ◽  
Chao Qin ◽  
Dacheng Tian ◽  
Sihai Yang ◽  
...  

Mutation rates and recombination rates vary between species and between regions within a genome. What are the determinants of these forms of variation? Prior evidence has suggested that the recombination might be mutagenic with an excess of new mutations in the vicinity of recombination break points. As it is conjectured that domesticated taxa have higher recombination rates than wild ones, we expect domesticated taxa to have raised mutation rates. Here, we use parent–offspring sequencing in domesticated and wild peach to ask (i) whether recombination is mutagenic, and (ii) whether domesticated peach has a higher recombination rate than wild peach. We find no evidence that domesticated peach has an increased recombination rate, nor an increased mutation rate near recombination events. If recombination is mutagenic in this taxa, the effect is too weak to be detected by our analysis. While an absence of recombination-associated mutation might explain an absence of a recombination–heterozygozity correlation in peach, we caution against such an interpretation.


Sign in / Sign up

Export Citation Format

Share Document