Neurodegeneration of brain networks in the amyotrophic lateral sclerosis–frontotemporal lobar degeneration (ALS–FTLD) continuum: evidence from MRI and MEG studies

CNS Spectrums ◽  
2017 ◽  
Vol 23 (6) ◽  
pp. 378-387 ◽  
Author(s):  
Francesca Trojsi ◽  
Pierpaolo Sorrentino ◽  
Giuseppe Sorrentino ◽  
Gioacchino Tedeschi

Brain imaging techniques, especially those based on magnetic resonance imaging (MRI) and magnetoencephalography (MEG), have been increasingly applied to study multiple large-scale distributed brain networks in healthy people and neurological patients. With regard to neurodegenerative disorders, amyotrophic lateral sclerosis (ALS), clinically characterized by the predominant loss of motor neurons and progressive weakness of voluntary muscles, and frontotemporal lobar degeneration (FTLD), the second most common early-onset dementia, have been proven to share several clinical, neuropathological, genetic, and neuroimaging features. Specifically, overlapping or mildly diverging brain structural and functional connectivity patterns, mostly evaluated by advanced MRI techniques—such as diffusion tensor and resting-state functional MRI (DT–MRI, RS–fMRI)—have been described comparing several ALS and FTLD populations. Moreover, though only pioneering, promising clues on connectivity patterns in the ALS–FTLD continuum may derive from MEG investigations. We will herein overview the current state of knowledge concerning the most advanced neuroimaging findings associated with clinical and genetic patterns of neurodegeneration across the ALS–FTLD continuum, underlying the possibility that network-based approaches may be useful to develop novel biomarkers of disease for adequately designing and monitoring more appropriate treatment strategies.

2016 ◽  
Vol 87 (6) ◽  
pp. 570-579 ◽  
Author(s):  
Hans-Peter Müller ◽  
Martin R Turner ◽  
Julian Grosskreutz ◽  
Sharon Abrahams ◽  
Peter Bede ◽  
...  

2010 ◽  
Vol 5 (2) ◽  
pp. 54 ◽  
Author(s):  
Dorothée Lulé ◽  

The development of non-invasive functional imaging techniques has allowed neuroscientists to investigate the physiological parameters of the clinical features of amyotrophic lateral sclerosis (ALS), a severe neurological disease. Modern neuroimaging techniques enable anatomy and function to be connectedin vivowith an acceptable balance between low patient load and high information capacity, making them ideal for clinical research in patients with physical restrictions, such as those with ALS. Structural imaging techniques in ALS include T1/T2-weighted structural magnetic resonance imaging, diffusion tensor imaging and voxel-based morphometry. Functional neuroimaging enables the acquisition of dynamic cortical function either in a passive (or resting) state or via active paradigms. The main technique used is functional magnetic resonance imaging. Structural and functional neuroimaging has provided evidence of alterations in motor and non-motor cortical pathways in ALS. In the future, neuroimaging may provide early diagnostic criteria to support the clinical diagnosis of ALS, help us to understand the aetiological background of the disease and pave the way for a new viewpoint on the functional capacities of these patients, which may have a major impact on our way of thinking about end-of-life decisions.


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi224-vi224
Author(s):  
Alexis Morell ◽  
Daniel Eichberg ◽  
Ashish Shah ◽  
Evan Luther ◽  
Victor Lu ◽  
...  

Abstract BACKGROUND Developing mapping tools that allow identification of traditional or non-traditional eloquent areas is necessary to minimize the risk of postoperative neurologic deficits. The objective of our study is to evaluate the use of a novel cloud-based platform that uses machine learning to identify cerebral networks in patients with brain tumors. METHODS We retrospectively included all adult patients who underwent surgery for brain tumor resection or thermal ablation at our Institution between the 16th of February and the 15th of May of 2021. Pre and postoperative contrast-enhanced MRI with T1-weighted and high-resolution Diffusion Tensor Imaging (DTI) sequences were uploaded into the Quicktome platform. After processing the data, we categorized the integrity of seven large-scale brain networks: sensorimotor, visual, ventral attention, central executive, default mode, dorsal attention and limbic. Affected networks were correlated with pre and postoperative clinical data, including neurologic deficits. RESULTS Thirty-five (35) patients were included in the study. The average age of the sample was 63.2 years, and 51.4% (n=18) were females. The most affected network was the central executive network (40%), followed by the dorsal attention and default mode networks (31.4%), while the least affected were the visual (11%) and ventral attention networks (17%). Patients with preoperative deficits showed a significantly higher number of altered networks before the surgery (p=0.021), compared to patients without deficits. In addition, we found that patients without neurologic deficits had an average of 2.06 large-scale networks affected, with 75% of them not being related to traditional eloquent areas as the sensorimotor, language or visual circuits. CONCLUSIONS The Quicktome platform is a practical tool that allows automatic visualization of large-scale brain networks in patients with brain tumors. Although further studies are needed, it may assist in the surgical management of traditional and non-traditional eloquent areas.


2018 ◽  
Vol 19 (10) ◽  
pp. 3137 ◽  
Author(s):  
Anna Konopka ◽  
Julie Atkin

Amyotrophic lateral sclerosis (ALS) is a fatal, rapidly progressing neurodegenerative disease affecting motor neurons, and frontotemporal dementia (FTD) is a behavioural disorder resulting in early-onset dementia. Hexanucleotide (G4C2) repeat expansions in the gene encoding chromosome 9 open reading frame 72 (C9orf72) are the major cause of familial forms of both ALS (~40%) and FTD (~20%) worldwide. The C9orf72 repeat expansion is known to form abnormal nuclei acid structures, such as hairpins, G-quadruplexes, and R-loops, which are increasingly associated with human diseases involving microsatellite repeats. These configurations form during normal cellular processes, but if they persist they also damage DNA, and hence are a serious threat to genome integrity. It is unclear how the repeat expansion in C9orf72 causes ALS, but recent evidence implicates DNA damage in neurodegeneration. This may arise from abnormal nucleic acid structures, the greatly expanded C9orf72 RNA, or by repeat-associated non-ATG (RAN) translation, which generates toxic dipeptide repeat proteins. In this review, we detail recent advances implicating DNA damage in C9orf72-ALS. Furthermore, we also discuss increasing evidence that targeting these aberrant C9orf72 confirmations may have therapeutic value for ALS, thus revealing new avenues for drug discovery for this disorder.


Radiology ◽  
2005 ◽  
Vol 237 (1) ◽  
pp. 258-264 ◽  
Author(s):  
Mirco Cosottini ◽  
Marco Giannelli ◽  
Gabriele Siciliano ◽  
Guido Lazzarotti ◽  
Maria Chiara Michelassi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document