X-Ray Emissions from Solar Flares and from Celestial Sources

1967 ◽  
Vol 1 (1) ◽  
pp. 4-5 ◽  
Author(s):  
T. A. Chubb

One of the interesting questions in solar X-ray astronomy is the question as to whether the hard X-ray emission which occurs during major solar flares is a thermal or nonthermal phenomenon. The evidence for non-thermal emission has been based in large measure on a balloon-borne experiment by Peterson and Winckler, which constituted the first detection of high energy flare X-rays. In the Peterson-Winckler experiment, the incident solar X-rays were measured by both an ion chamber and a Geiger counter photometer, and from the ratio of responses, the hardness character of the incident X-rays was reduced. It was concluded that the observed result could have been explained in terms of the sudden non-thermal production of a group of electrons with energy of the order of 500 kilovolts.

2019 ◽  
Vol 623 ◽  
pp. A67 ◽  
Author(s):  
I. Pillitteri ◽  
S. Sciortino ◽  
F. Reale ◽  
G. Micela ◽  
C. Argiroffi ◽  
...  

X-ray emission is a characteristic feature of young stellar objects (YSOs) and the result of the interplay between rotation, magnetism, and accretion. For this reason high energy phenomena are key elements to understand the process of star formation, the evolution of their circumstellar disks, and eventually the formation of planets. We investigated the X-ray characteristics of the Class I YSO Elias 29 with joint XMM-Newton and NuSTAR observations of total duration 300 ks and 450 ks, respectively. These are the first observations of a very young (<1 Myr) stellar object in a band encompassing simultaneously both soft and hard X-rays (0.3 − 10 keV in XMM-Newton and ≈3 − 80 keV in NuSTAR). The quiescent spectrum is well described by one thermal component at ∼4.2 keV absorbed by NH ∼ 5.5  ×  1022 cm−2. In addition to the hot Fe complex at 6.7 keV, we observed fluorescent emission from Fe at ∼6.4 keV, confirming the previous findings. The line at 6.4 keV is detected during quiescent and flaring states and its flux is variable. The equivalent width is found varying in the range ≈0.15 − 0.5 keV. These values make unrealistic a simple model with a centrally illuminated disk and suggest a role of the cavity containing Elias 29 and possible reverberation processes that could occur in it. We observed two flares that have durations of 20 ks and 50 ks, respectively, and we observed the first flare with both XMM-Newton and NuSTAR. For this flare, we used its peak temperature and timing as diagnostics to infer a loop size of about 1 − 2 R⊙ in length, which is about 20%–30% of the stellar radius. This implies a relatively compact structure. We systematically observed an increase in NH of a factor five during the flares. This behavior has been observed during flares previously detected in Elias 29 with XMM-Newton and ASCA. The phenomenon suggests that the flaring regions could be buried under the accretion streams and at high stellar latitudes because the X-rays from flares pass through gas denser than the gas along the line of sight of the quiescent corona. In a different scenario, a contribution from scattered soft photons to the primary coronal emission could mimic a shallower NH in the quiescent spectrum. In the spectrum of the full NuSTAR exposure, we detect hard X-ray emission in the band ≈20 − 80 keV which is in excess with respect to the thermal emission and that is significant at a level of ≥2σ. We speculate that the hard X-ray emission could be due to a population of energetic electrons accelerated by the magnetic field along the accretion streams. These particles, along with X-ray photons with E >  7.11 keV, could be responsible for pumping up the Fe fluorescence when hitting cold Fe in the circumstellar disk.


1994 ◽  
Vol 142 ◽  
pp. 599-610
Author(s):  
M. R. Kundu ◽  
S. M. White ◽  
N. Gopalswamy ◽  
J. Lim

AbstractWe present comparisons of multiwavelength data for a number of solar flares observed during the major campaign of 1991 June. The different wavelengths are diagnostics of energetic electrons in different energy ranges: soft X-rays are produced by electrons with energies typically below 10 keV, hard X-rays by electrons with energies in the range 10-200 keV, microwaves by electrons in the range 100 keV-1 MeV, and millimeter-wavelength emission by electrons with energies of 0.5 MeV and above. The flares in the 1991 June active period were remarkable in two ways: all have very high turnover frequencies in their microwave spectra, and very soft hard X-ray spectra. The sensitivity of the microwave and millimeter data permit us to study the more energetic (>0.3 MeV) electrons even in small flares, where their high-energy bremsstrahlung is too weak for present detectors. The millimeter data show delays in the onset of emission with respect to the emissions associated with lower energy electrons and differences in time profiles, energy spectral indices incompatible with those implied by the hard X-ray data, and a range of variability of the peak flux in the impulsive phase when compared with the peak hard X-ray flux which is two orders of magnitude larger than the corresponding variability in the peak microwave flux. All these results suggest that the hard X-ray-emitting electrons and those at higher energies which produce millimeter emission must be regarded as separate populations. This has implications for the well-known “number problem” found previously when comparing the numbers of nonthermal electrons required to produce the hard X-ray and radio emissions.Subject headings: Sun: flares — Sun: radio radiation — Sun: X-rays, gamma rays


2012 ◽  
Vol 8 (S294) ◽  
pp. 571-572 ◽  
Author(s):  
Tomasz Mrozek ◽  
Szymon Gburek ◽  
Marek Siarkowski ◽  
Barbara Sylwester ◽  
Janusz Sylwester ◽  
...  

AbstractIn February 2009, during recent deepest solar minimum, Polish Solar Photometer in X-rays (SphinX) begun observations of the Sun in the energy range of 1.2–15 keV. SphinX was almost 100 times more sensitive than GOES X-ray Sensors. The silicon PIN diode detectors used in the experiment were carefully calibrated on the ground using Synchrotron Radiation Source BESSY II. The SphinX energy range overlaps with the Ramaty High Energy Solar Spectroscopic Imager (RHESSI) energy range. The instrument provided us with observations of hundreds of very small flares and X-ray brightenings. We have chosen a group of solar flares observed simultaneously with GOES, SphinX and RHESSI and performed spectroscopic analysis of observations wherever possible. The analysis of thermal part of the spectra showed that SphinX is a very sensitive complementary observatory for RHESSI and GOES.


2019 ◽  
Vol 488 (4) ◽  
pp. 4614-4622 ◽  
Author(s):  
Rajath Sathyaprakash ◽  
Timothy P Roberts ◽  
Magdalena M Siwek

ABSTRACT Optical and radio observations of shock-ionized bubble nebulae surrounding ultraluminous X-ray sources (ULXs) suggest that they are powered by jets or supercritical outflows presumably launched from the ULX accretion disc. Recent simulations of these systems have shown that the shocked wind can emit thermal X-rays with estimated luminosities ≲1036 erg s−1. In this work, we investigated whether it is possible to detect and spatially resolve the X-ray emission from these systems using archival Chandra observations of the ULX Holmberg IX X-1 (Ho IX X-1). This source is an ideal target to study for two reasons: it is surrounded by an optical bubble nebula with a large spatial extent (∼400 pc) that can easily be resolved with Chandra. Further, it has a hard X-ray continuum that is easily distinguishable from the expected soft thermal emission from the nebula. However, a spectral and photometric analysis on stacked Chandra observations of the source reveals that there is no strong evidence for an X-ray bubble associated with it, to a limiting luminosity of ∼2 × 1036 erg s−1. The detection of such X-ray nebulae may be possible with future X-ray missions such as Advanced Telescope for High ENergy Astrophysics(ATHENA), which would provide useful constraints on the kinematics of the outflow. Finally, our observations also emphasize that the nebular emission does not contribute significantly to the residuals in the X-ray spectrum of the source, which are more likely to be linked to processes localized to the ULX.


1994 ◽  
Vol 159 ◽  
pp. 113-122
Author(s):  
Rick Edelson

CGRO and IUE observations suggest that the strong, aperiodic variability seen in the Exosat long-look observations of AGN extends over a much wider energy band. Some BL Lac objects (but no Seyfert 1 galaxies) have shown X-ray variations which were so rapid that they violate the assumptions of isotropy inherent in the Eddington limit. In the ultraviolet, Seyfert 1s as a class show an anti-correlation between the variability amplitude and luminosity, while BL Lacs show a positive correlation. Furthermore, Seyfert 1s show strong flux-correlated spectral variability, while BL Lacs show little or none. All of this suggests that the high-energy continua of BL Lacs are beamed towards us, while the ultraviolet continua of Seyfert 1s are emitted isotropically.The November 1991 multi-waveband monitoring of the BL Lac PKS 2155−304 showed strong correlated variability, with the soft X-rays leading the ultraviolet by a few hours, and no measurable lag between the ultraviolet and optical down to a limit of ≲ 1.5 hr. This indicates that the X-rays from this BL Lac are not produced by Compton upscattering, and that the ultraviolet does not come directly from a thermal source such as an accretion disk. This also strongly constrains the relativistic jet model, suggesting that all of the radiation is produced in a flattened region like a shock front.Low temporal resolution ultraviolet/optical monitoring of the Seyfert 1 NGC 5548 in 1989 yielded a strong correlation with no measurable lag to a limit of ≲4 days, casting some doubt on the standard model of thermal emission from an accretion disk in Seyfert 1s. Upcoming X-ray/ultraviolet/optical monitoring of the Seyfert 1 NGC 4151 in December 1993 will have much faster sampling, to permit a strong test of both this model and the competing reprocessing model.


2019 ◽  
Vol 624 ◽  
pp. A130 ◽  
Author(s):  
Paolo Massa ◽  
Michele Piana ◽  
Anna Maria Massone ◽  
Federico Benvenuto

The Spectrometer/Telescope for Imaging X-rays (STIX) will study solar flares across the hard X-ray window provided by the Solar Orbiter cluster. Similarly to the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), STIX is a visibility-based imaging instrument that will require Fourier-based image reconstruction methods. However, in this paper we show that as for RHESSI, count-based imaging is also possible for STIX. Specifically, we introduce and illustrate a mathematical model that mimics the STIX data formation process as a projection from the incoming photon flux into a vector consisting of 120 count components. Then we test the reliability of expectation maximization for image reconstruction in the case of several simulated configurations that are typical of flare morphology.


1994 ◽  
Vol 142 ◽  
pp. 611-621
Author(s):  
N. Vilmer

AbstractHard X-rays and gamma-rays are the most direct signature of the energetic electrons and ions which are accelerated during solar flares. Since the beginning of 1990 the PHEBUS instrument and the SIGMA anticoincidence shield aboard GRANAT have provided hard X-ray and gamma-ray observations of solar bursts in the energy range 0.075-124 and 0.200-15 MeV, respectively. After a brief description of the experiments, we present some results obtained on solar bursts recorded in 1990 and 1991 June. Special emphasis is given to the results related with particle acceleration during solar flares.The first part of the review is devoted to the constraints obtained on the electron acceleration timescale through the analysis of the temporal characteristics of the bursts. Combined studies of hard X-ray and gamma-ray emissions from PHEBUS and radio emissions from the Nançay Multifrequency Radioheliograph are used to infer constraints on the coronal magnetic topology involved in flares. The characteristics (location, spectrum) of the radio-emitting sources are found to vary within a flare from one hard X-ray peak to the other. Hard X-ray and gamma-ray burst onsets and rapid increases of the > 10 MeV emission are coincident with changes in the associated radio emission pattern. These results will be discussed in the context of the flare energy release.The second part of the paper concerns the heliocentric angle distribution of > 10 MeV events and presents more detailed observations of some of the largest flares in the gamma-ray line and the high-energy domains produced by ultrarelativistic electrons and > 100 MeV nucleon−1 ions. The PHEBUS observations of the gamma-ray line flare of 11 June 1991 have been used to deduce the hardness of the accelerated ion spectrum. The link between the main part of the flare and the late long-lasting >50 MeV emission detected by EGRET/COMPTON is discussed. Finally some observations of the large 1990 May 24 flare which produced a large neutron event at ground level are presented.Subject headings: acceleration of particles — Sun: flares — Sun: radio radiation — Sun: X-rays, gamma rays


Author(s):  
A.J. Tousimis

An integral and of prime importance of any microtopography and microanalysis instrument system is its electron, x-ray and ion detector(s). The resolution and sensitivity of the electron microscope (TEM, SEM, STEM) and microanalyzers (SIMS and electron probe x-ray microanalyzers) are closely related to those of the sensing and recording devices incorporated with them.Table I lists characteristic sensitivities, minimum surface area and depth analyzed by various methods. Smaller ion, electron and x-ray beam diameters than those listed, are possible with currently available electromagnetic or electrostatic columns. Therefore, improvements in sensitivity and spatial/depth resolution of microanalysis will follow that of the detectors. In most of these methods, the sample surface is subjected to a stationary, line or raster scanning photon, electron or ion beam. The resultant radiation: photons (low energy) or high energy (x-rays), electrons and ions are detected and analyzed.


2013 ◽  
Vol 46 (5) ◽  
pp. 1508-1512 ◽  
Author(s):  
Byron Freelon ◽  
Kamlesh Suthar ◽  
Jan Ilavsky

Coupling small-angle X-ray scattering (SAXS) and ultra-small-angle X-ray scattering (USAXS) provides a powerful system of techniques for determining the structural organization of nanostructured materials that exhibit a wide range of characteristic length scales. A new facility that combines high-energy (HE) SAXS and USAXS has been developed at the Advanced Photon Source (APS). The application of X-rays across a range of energies, from 10 to 50 keV, offers opportunities to probe structural behavior at the nano- and microscale. An X-ray setup that can characterize both soft matter or hard matter and high-Zsamples in the solid or solution forms is described. Recent upgrades to the Sector 15ID beamline allow an extension of the X-ray energy range and improved beam intensity. The function and performance of the dedicated USAXS/HE-SAXS ChemMatCARS-APS facility is described.


1989 ◽  
Vol 120 ◽  
pp. 536-536
Author(s):  
S.L. Snowden

The 1/4 keV diffuse X-ray background (SXRB) is discussed in relation to the local interstellar medium (LISM). The most likely source for these soft X-rays is thermal emission from a hot diffuse plasma. The existence of a non-zero flux from all directions and the short ISM mean free path of these X-rays (1020HI cm-2), coupled with ISM pressure constraints, imply that the plasma has a local component and that it must, at least locally (nearest hundred parsecs), have a large filling factor. Our understanding of the geometry and physical parameters of the LISM is therefore directly tied to our understanding of the SXRB.


Sign in / Sign up

Export Citation Format

Share Document