Molecular Clouds and Millimetre Astronomy

1996 ◽  
Vol 13 (2) ◽  
pp. 197-201
Author(s):  
Michael Burton

AbstractA condensed summary of molecular cloud astrophysics is presented. Some examples of the power of combining near-IR and mm molecular line observations are given.

2020 ◽  
Vol 498 (2) ◽  
pp. 2440-2455
Author(s):  
Yuxuan (宇轩) Yuan (原) ◽  
Mark R Krumholz ◽  
Blakesley Burkhart

ABSTRACT Molecular line observations using a variety of tracers are often used to investigate the kinematic structure of molecular clouds. However, measurements of cloud velocity dispersions with different lines, even in the same region, often yield inconsistent results. The reasons for this disagreement are not entirely clear, since molecular line observations are subject to a number of biases. In this paper, we untangle and investigate various factors that drive linewidth measurement biases by constructing synthetic position–position–velocity cubes for a variety of tracers from a suite of self-gravitating magnetohydrodynamic simulations of molecular clouds. We compare linewidths derived from synthetic observations of these data cubes to the true values in the simulations. We find that differences in linewidth as measured by different tracers are driven by a combination of density-dependent excitation, whereby tracers that are sensitive to higher densities sample smaller regions with smaller velocity dispersions, opacity broadening, especially for highly optically thick tracers such as CO, and finite resolution and sensitivity, which suppress the wings of emission lines. We find that, at fixed signal-to-noise ratio, three commonly used tracers, the J = 4 → 3 line of CO, the J = 1 → 0 line of C18O, and the (1,1) inversion transition of NH3, generally offer the best compromise between these competing biases, and produce estimates of the velocity dispersion that reflect the true kinematics of a molecular cloud to an accuracy of $\approx 10{{\ \rm per\ cent}}$ regardless of the cloud magnetic field strengths, evolutionary state, or orientations of the line of sight relative to the magnetic field. Tracers excited primarily in gas denser than that traced by NH3 tend to underestimate the true velocity dispersion by $\approx 20{{\ \rm per\ cent}}$ on average, while low-density tracers that are highly optically thick tend to have biases of comparable size in the opposite direction.


1991 ◽  
Vol 147 ◽  
pp. 25-28
Author(s):  
L. Bronfman ◽  
J. May ◽  
L. A. Nyman ◽  
P. Thaddeus

the CS J=2 →1 molecular line at 98 GHz, a normally optically thin line requiring high densities to be excited, has been detected with SEST (Swedish ESO Submillimeter Telescope) toward 294 IRAS pointlike sources having the characteristic FIR colors of embedded stellar objects and apparently associated with the largest molecular cloud complexes in the southern Milky Way. We present here their Galactocentric radial distribution and a correlation between their FIR and CS luminosities.


2018 ◽  
Vol 610 ◽  
pp. A12 ◽  
Author(s):  
Emeric Bron ◽  
Chloé Daudon ◽  
Jérôme Pety ◽  
François Levrier ◽  
Maryvonne Gerin ◽  
...  

Context. Previous attempts at segmenting molecular line maps of molecular clouds have focused on using position-position-velocity data cubes of a single molecular line to separate the spatial components of the cloud. In contrast, wide field spectral imaging over a large spectral bandwidth in the (sub)mm domain now allows one to combine multiple molecular tracers to understand the different physical and chemical phases that constitute giant molecular clouds (GMCs). Aims. We aim at using multiple tracers (sensitive to different physical processes and conditions) to segment a molecular cloud into physically/chemically similar regions (rather than spatially connected components), thus disentangling the different physical/chemical phases present in the cloud. Methods. We use a machine learning clustering method, namely the Meanshift algorithm, to cluster pixels with similar molecular emission, ignoring spatial information. Clusters are defined around each maximum of the multidimensional probability density function (PDF) of the line integrated intensities. Simple radiative transfer models were used to interpret the astrophysical information uncovered by the clustering analysis. Results. A clustering analysis based only on the J = 1–0 lines of three isotopologues of CO proves sufficient to reveal distinct density/column density regimes (nH ~ 100 cm-3, ~500 cm-3, and >1000 cm-3), closely related to the usual definitions of diffuse, translucent and high-column-density regions. Adding two UV-sensitive tracers, the J = 1–0 line of HCO+ and the N = 1–0 line of CN, allows us to distinguish two clearly distinct chemical regimes, characteristic of UV-illuminated and UV-shielded gas. The UV-illuminated regime shows overbright HCO+ and CN emission, which we relate to a photochemical enrichment effect. We also find a tail of high CN/HCO+ intensity ratio in UV-illuminated regions. Finer distinctions in density classes (nH ~ 7 × 103 cm-3, ~4 × 104 cm-3) for the densest regions are also identified, likely related to the higher critical density of the CN and HCO+ (1–0) lines. These distinctions are only possible because the high-density regions are spatially resolved. Conclusions. Molecules are versatile tracers of GMCs because their line intensities bear the signature of the physics and chemistry at play in the gas. The association of simultaneous multi-line, wide-field mapping and powerful machine learning methods such as the Meanshift clustering algorithm reveals how to decode the complex information available in these molecular tracers.


1991 ◽  
Vol 147 ◽  
pp. 25-28
Author(s):  
L. Bronfman ◽  
J. May ◽  
L. A. Nyman ◽  
P. Thaddeus

the CS J=2 →1 molecular line at 98 GHz, a normally optically thin line requiring high densities to be excited, has been detected with SEST (Swedish ESO Submillimeter Telescope) toward 294 IRAS pointlike sources having the characteristic FIR colors of embedded stellar objects and apparently associated with the largest molecular cloud complexes in the southern Milky Way. We present here their Galactocentric radial distribution and a correlation between their FIR and CS luminosities.


2010 ◽  
Vol 6 (S270) ◽  
pp. 99-102
Author(s):  
João Alves ◽  
Marco Lombardi ◽  
Charles Lada

AbstractStars form in the densest regions of clouds of cold molecular hydrogen. Measuring structure in these clouds is far from trivial as 99% of the mass of a molecular cloud is inaccessible to direct observation. Over the last decade we have been developing an alternative, more robust density tracer technique based on dust extinction measurements towards background starlight. The new technique does not suffer from the complications plaguing the more conventional molecular line and dust emission techniques, and when used with these can provide unique views on cloud chemistry and dust grain properties in molecular clouds. In this brief communication we summarize the main results achieved so far using this technique.


2016 ◽  
Vol 11 (S322) ◽  
pp. 133-136
Author(s):  
N. Butterfield ◽  
C.C. Lang ◽  
E. A. C. Mills ◽  
D. Ludovici ◽  
J. Ott ◽  
...  

AbstractWe present NH3 and H64α+H63α VLA observations of the Radio Arc region, including the M0.20 – 0.033 and G0.10 – 0.08 molecular clouds. These observations suggest the two velocity components of M0.20 – 0.033 are physically connected in the south. Additional ATCA observations suggest this connection is due to an expanding shell in the molecular gas, with the centroid located near the Quintuplet cluster. The G0.10 – 0.08 molecular cloud has little radio continuum, strong molecular emission, and abundant CH3OH masers, similar to a nearby molecular cloud with no star formation: M0.25+0.01. These features detected in G0.10 – 0.08 suggest dense molecular gas with no signs of current star formation.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 709-710
Author(s):  
Enrique Vázquez-Semadeni ◽  
Gilberto Gómez

AbstractWe discuss the formation of filaments in molecular clouds (MCs) as the result of large-scale collapse in the clouds. We first give arguments suggesting that self-gravity dominates the nonthermal motions, and then briefly describe the resulting structure, similar to that found in molecular-line and dust observations of the filaments in the clouds. The filaments exhibit a hierarchical structure in both density and velocity, suggesting a scale-free nature, similar to that of the cosmic web, resulting from the domination of self-gravity from the MC down to the core scale.


1994 ◽  
Vol 140 ◽  
pp. 245-246
Author(s):  
T. Umemoto ◽  
N. Ohashi ◽  
Y. Murata ◽  
K. Tatematsu ◽  
M. Suzuki

It is known that stars in GMCs are often born as clusters. Recently, near infrared imaging has enabled us to study the young stars within molecular clouds (e.g., Lada & Lada 1991). Orion Molecular Cloud 2 (OMC2) is located 12' north of the Trapezium cluster in the Orion A cloud, and contains a cluster of about 20 near-IR sources and several FIR sources distributed within a diameter of 0.2 pc (Rayner et al... 1989; Johnson et al. 1990; Mezger, Wink, & Zylka 1990). By large scale mapping observations using the NRO 45 m telescope, this infrared cluster is found to be associated with a dense molecular core (Tatematsu et al. 1993, Umemoto et al. 1993). The region was observed using the Nobeyama Millimeter Array (NMA) to elucidate the structure and cluster formation process within a core.


Sign in / Sign up

Export Citation Format

Share Document