Structure and evolution of molecular clouds near H II regions. II - The disk constrained H II region, S106

1982 ◽  
Vol 255 ◽  
pp. 497 ◽  
Author(s):  
J. Bally ◽  
N. Z. Scoville
1987 ◽  
Vol 115 ◽  
pp. 171-171
Author(s):  
H. R. Dickel ◽  
W. M. Goss ◽  
A. H. Rots

Small clusters of recently-formed massive stars with their associated compact H II regions are often found embedded in the dense cores of molecular clouds. The H2CO opacity is correlated with the compactness of the H II region and is especially high for those with associated maser activity although additional factors are involved for the ultra-compact H II regions (UCH II). VLA observations of H2CO at 2 cm have been made towards the UCH II regions of W49-north. The highest H2CO opacity of 1.0 is found towards region A which does not have maser activity; yet one of the most compact region C, has an H2CO opacity of only 0.3, For these sources the integrated H2CO opacity (over the entire profile) may be more indicative of compactness. This may be due to the broader H2CO lines which can occur towards the maser regions. For example, large line widths of 10 to 12 km s−1 ate found towards W49-north G where the most intense water masers are located and towards W49-north B which has OH masers. The H2CO line with the highest 2 cm opacity of 2.5 and a narrow width of 2 km s−1 is found towards the UCH II region ON 3 which has only weak H2O maser emission.


2019 ◽  
Vol 487 (2) ◽  
pp. 2200-2214 ◽  
Author(s):  
Manuel Zamora-Avilés ◽  
Enrique Vázquez-Semadeni ◽  
Ricardo F González ◽  
José Franco ◽  
Steven N Shore ◽  
...  

Abstract We present radiation-magnetohydrodynamic simulations aimed at studying evolutionary properties of H ii regions in turbulent, magnetized, and collapsing molecular clouds formed by converging flows in the warm neutral medium. We focus on the structure, dynamics, and expansion laws of these regions. Once a massive star forms in our highly structured clouds, its ionizing radiation eventually stops the accretion (through filaments) towards the massive star-forming regions. The new overpressured H ii regions push away the dense gas, thus disrupting the more massive collapse centres. Also, because of the complex density structure in the cloud, the H ii regions expand in a hybrid manner: they virtually do not expand towards the densest regions (cores), while they expand according to the classical analytical result towards the rest of the cloud, and in an accelerated way, as a blister region, towards the diffuse medium. Thus, the ionized regions grow anisotropically, and the ionizing stars generally appear off-centre of the regions. Finally, we find that the hypotheses assumed in standard H ii-region expansion models (fully embedded region, blister-type, or expansion in a density gradient) apply simultaneously in different parts of our simulated H ii regions, producing a net expansion law (R∝ tα, with α in the range of 0.93–1.47 and a mean value of 1.2 ± 0.17) that differs from any of those of the standard models.


1984 ◽  
Vol 108 ◽  
pp. 257-258
Author(s):  
Michael Rosa ◽  
Jorge Melnick ◽  
Preben Grosbol

The massive H II region NGC 3603 is the closest galactic counterpart to the giant LMC nebula 30 Dor. Walborn (1973) first compared the ionizing OB/WR clusters of the two H II regions and suggested that R 136, the unresolved luminous WR + 0 type central object of 30 Dor, might be a multiple system like the core region of NGC 3603. Suggestions that the dominant component of R 136, i.e. R 136A, might be either a single or a very few supermassive and superluminous stars (Schmidt-Kaler and Feitzinger 1982, Savage et al. 1983) have recently been disputed by Moffat and Seggewiss (1983) and Melnick (1983), who have presented spectroscopic and photometric evidence to support the hypothesis of an unresolved cluster of stars. We have extended Walborn's original comparison of the apparent morphology of the two clusters by digital treatment of the images to simulate how the galactic cluster would look like if it were located in the LMC


2020 ◽  
Vol 496 (1) ◽  
pp. 870-874
Author(s):  
M B Areal ◽  
A Buccino ◽  
S Paron ◽  
C Fariña ◽  
M E Ortega

ABSTRACT Evidence for triggered star formation linking three generations of stars is difficult to assemble, as it requires convincingly associating evolved massive stars with H ii regions that, in turn, would need to present signs of active star formation. We present observational evidence for triggered star formation relating three generations of stars in the neighbourhood of the star LS II +26 8. We carried out new spectroscopic observations of LS II +26 8, revealing that it is a B0 III-type star. We note that LS II +26 8 is located exactly at the geometric centre of a semi-shell-like H ii region complex. The most conspicuous component of this complex is the H ii region Sh2-90, which is probably triggering a new generation of stars. The distances to LS II +26 8 and to Sh2-90 are in agreement (between 2.6 and 3 kpc). Analysis of the interstellar medium on a larger spatial scale shows that the H ii region complex lies on the north-western border of an extended H2 shell. The radius of this molecular shell is about 13 pc, which is in agreement with what an O9 V star (the probable initial spectral type of LS II +26 8 as inferred from evolutive tracks) can generate through its winds in the molecular environment. In conclusion, the spatial and temporal correspondences derived in our analysis enable us to propose a probable triggered star formation scenario initiated by the evolved massive star LS II +26 8 during its main-sequence stage, followed by stars exciting the H ii region complex formed in the molecular shell, and culminating in the birth of young stellar objects around Sh2-90.


2018 ◽  
Vol 14 (S344) ◽  
pp. 161-177 ◽  
Author(s):  
Denise R. Gonçalves

AbstractThe Local Group contains a great number of dwarf irregulars and spheroidals, for which the spectroscopy of individual stars can be obtained. Thus, the chemical evolution of these galaxies can be traced, with the only need of finding populations spanning a large age range and such that we can accurately derive the composition. Planetary nebulae (PNe) are old- and intermediate-age star remnants and their chemical abundances can be obtained up to 3-4 Mpc. H ii regions, which are brighter and much easily detected, represent galaxies young content. PNe and H ii regions share similar spectroscopic features and are analysed in the same way. Both are among the best tracers of the chemical evolution allowing to draw the chemical time line of nearby galaxies. The focus in this review are the PN and H ii region populations as constraints to the chemical evolution models and the mass-metallicity relation of the local universe.


1991 ◽  
Vol 147 ◽  
pp. 513-514
Author(s):  
H. Weikard ◽  
K. Sugitani ◽  
G. Duvert ◽  
M. Miller

IC 1396 is an H II region in Cepheus excited by the massive 06.5 star HD 206267. The distance is about 750 pc. The region exhibits a number of bright-rimmed molecular clouds in which outflows have been detected (Sugitani et al. 1989, Duvert et al. 1990).


Author(s):  
Katsuhiro Hayashi ◽  
Satoshi Yoshiike ◽  
Rei Enokiya ◽  
Shinji Fujita ◽  
Rin Yamada ◽  
...  

Abstract We report on a study of the high-mass star formation in the H ii region W 28 A2 by investigating the molecular clouds that extend over ∼5–10 pc from the exciting stars using the 12CO and 13CO (J = 1–0) and 12CO (J = 2–1) data taken by NANTEN2 and Mopra observations. These molecular clouds consist of three velocity components with CO intensity peaks at VLSR ∼ −4 km s−1, 9 km s−1, and 16 km s−1. The highest CO intensity is detected at VLSR ∼ 9 km s−1, where the high-mass stars with spectral types O6.5–B0.5 are embedded. We found bridging features connecting these clouds toward the directions of the exciting sources. Comparisons of the gas distributions with the radio continuum emission and 8 μm infrared emission show spatial coincidence/anti-coincidence, suggesting physical associations between the gas and the exciting sources. The 12CO J = 2–1 to 1–0 intensity ratio shows a high value (≳0.8) toward the exciting sources for the −4 km s−1 and +9 km s−1 clouds, possibly due to heating by the high-mass stars, whereas the intensity ratio at the CO intensity peak (VLSR ∼ 9 km s−1) decreases to ∼0.6, suggesting self absorption by the dense gas in the near side of the +9 km s−1 cloud. We found partly complementary gas distributions between the −4 km s−1 and +9 km s−1 clouds, and the −4 km s−1 and +16 km s−1 clouds. The exciting sources are located toward the overlapping region in the −4 km s−1 and +9 km s−1 clouds. Similar gas properties are found in the Galactic massive star clusters RCW 38 and NGC 6334, where an early stage of cloud collision to trigger the star formation is suggested. Based on these results, we discuss the possibility of the formation of high-mass stars in the W 28 A2 region being triggered by cloud–cloud collision.


1999 ◽  
Vol 193 ◽  
pp. 480-481
Author(s):  
Vanessa C. Galarza ◽  
Donald R. Garnett ◽  
You-Hua Chu

We present results from new HST imaging and spectroscopy of the peculiar Large Magellanic Cloud H II region N 44C and its ionizing star. While this nebula exhibits strong He II recombination emission, the source of the He+ ionizing photons has not been found. The UV spectrum of the ionizing star suggests an approximate spectral class of 07–08; the UV Si IV, He II, and N IV features do not show P-Cygni profiles, indicating that the ionizing star is not a supergiant. No companion star has yet been detected. Ground-based and HST optical spectroscopy of the ionized gas shows that the nebular abundances of C, N, O and He are not anomalous relative to other LMC H II regions, suggesting that no previous WR/SN companion has disappeared. Echelle spectroscopy has also ruled out the presence of high velocity shocked gas. Deep ROSAT imaging shows no X-ray point source in this location. The “fossil X-ray binary” hypothesis of Pakull & Motch (1989) remains the best explanation for the ionization of this nebula; however, convincing evidence for this hypothesis remains elusive.


2008 ◽  
Vol 4 (S259) ◽  
pp. 25-34
Author(s):  
Gary J. Ferland

AbstractMagnetic pressure has long been known to dominate over gas pressure in atomic and molecular regions of the interstellar medium. Here I review several recent observational studies of the relationships between the H+, H0 and H2 regions in M42 (the Orion complex) and M17. A simple picture results. When stars form they push back surrounding material, mainly through the outward momentum of starlight acting on grains, and field lines are dragged with the gas due to flux freezing. The magnetic field is compressed and the magnetic pressure increases until it is able to resist further expansion and the system comes into approximate magnetostatic equilibrium. Magnetic field lines can be preferentially aligned perpendicular to the long axis of quiescent cloud before stars form. After star formation and pushback occurs ionized gas will be constrained to flow along field lines and escape from the system along directions perpendicular to the long axis. The magnetic field may play other roles in the physics of the H II region and associated PDR. Cosmic rays may be enhanced along with the field and provide additional heating of atomic and molecular material. Wave motions may be associated with the field and contribute a component of turbulence to observed line profiles.


Sign in / Sign up

Export Citation Format

Share Document