Hippocampal Lateralization and Memory in Children and Adults

2013 ◽  
Vol 19 (10) ◽  
pp. 1042-1052 ◽  
Author(s):  
Laura Hopf ◽  
Maher A. Quraan ◽  
Michael J. Cheung ◽  
Margot J. Taylor ◽  
Jennifer D. Ryan ◽  
...  

AbstractThe neural organization of cognitive processes, particularly hemispheric lateralization, changes throughout childhood and adolescence. Differences in the neural basis of relational memory between children and adults are not well characterized. In this study we used magnetoencephalography to observe the lateralization differences of hippocampal activation in children and adults during performance of a relational memory task, transverse patterning (TP). The TP task was paired with an elemental control task, which does not depend upon the hippocampus. We contrasted two hypotheses; the compensation hypothesis would suggest that more bilateral activation in children would lead to better TP performance, whereas the maturation hypothesis would predict that a more adult-like right-lateralized pattern of hippocampal activation would lead to better performance. Mean-centered partial least squares analysis was used to determine unique patterns of brain activation specific to each task per group, while diminishing activation that is consistent across tasks. Our findings support the maturation hypothesis that a more adult-like pattern of increased right hippocampal lateralization in children leads to superior performance on the TP task. We also found dynamic changes of lateralization throughout the time course for all three groups, suggesting that caution is needed when interpreting conclusions about brain lateralization. (JINS, 2013, 19, 1–11)

2020 ◽  
Author(s):  
Zhemeng Wu ◽  
Martina Kavanova ◽  
Lydia Hickman ◽  
Fiona Lin ◽  
Mark J. Buckley

AbstractAccording to dual-process theory, recognition memory performance draws upon two processes, familiarity and recollection. The relative contribution to recognition memory are commonly distinguished in humans by analyzing receiver-operating-characteristics (ROC) curves; analogous methods are more complex and very rare in animals but fast familiarity and slow recollective-like processes (FF/SR) have been detected in non-human primates (NHPs) based on analyzing recognition error response time profiles. The relative utility of these methods to investigate familiarity and recollection/recollection-like processes across species is uncertain; indeed, even how comparable the FF/SR measures are across humans and NHPs remains unclear. Therefore in this study a broadly similar recognition memory task was exploited in both humans and NHPs to investigate the time course of the two recognition processes. We first show that the FF/SR dissociation exists in this task in human participants and then we demonstrate a similar profile in NHPs which suggests that FF/SR processes are comparable across species. We then verified, using ROC-derived indices for each time-bin in the FF/SR profile, that the ROC and FF/DR measures are related. Hence we argue that the FF/SR approach, procedurally easier in animals, can be used as a decent proxy to investigate these two recognition processes in future animal studies, important given that scant data exists as to the neural basis underlying recollection yet many of the most informative techniques primarily exist in animal models.


1995 ◽  
Vol 74 (6) ◽  
pp. 2469-2486 ◽  
Author(s):  
D. C. Fitzpatrick ◽  
S. Kuwada ◽  
R. Batra ◽  
C. Trahiotis

1. In most natural environments, sound waves from a single source will reach a listener through both direct and reflected paths. Sound traveling the direct path arrives first, and determines the perceived location of the source despite the presence of reflections from many different locations. This phenomenon is called the "law of the first wavefront" or "precedence effect." The time at which the reflection is first perceived as a separately localizable sound defines the end of the precedence window and is called "echo threshold." The precedence effect represents an important property of the auditory system, the neural basis for which has only recently begun to be examined. Here we report the responses of single neurons in the inferior colliculus (IC) and superior olivary complex (SOC) of the unanesthetized rabbit to a sound and its simulated reflection. 2. Stimuli were pairs of monaural or binaural clicks delivered through earphones. The leading click, or conditioner, simulated a direct sound, and the lagging click, or probe, simulated a reflection. Interaural time differences (ITDs) were introduced in the binaural conditioners and probes to adjust their simulated locations. The probe was always set at the neuron's best ITD, whereas the conditioner was set at the neuron's best ITD or its worst ITD. To measure the time course of the effects of the conditioner on the probe, we examined the response to the probe as a function of the conditioner-probe interval (CPI). 3. When IC neurons were tested with conditioners and probes set at the neuron's best ITD, the response to the probe as a function of CPI had one of two forms: early-low or early-high. In early-low neurons the response to the probe was initially suppressed but recovered monotonically at longer CPIs. Early-high neurons showed a nonmonotonic recovery pattern. In these neurons the maximal suppression did not occur at the shortest CPIs, but rather after a period of less suppression. Beyond this point, recovery was similar to that of early-low neurons. The presence of early-high neurons meant that the overall population was never entirely suppressed, even at short CPIs. Taken as a whole. CPIs for 50% recovery of the response to the probe among neurons ranged from 1 to 64 ms with a median of approximately 6 ms. 4. The above results are consistent with the time course of the precedence effect for the following reasons. 1) The lack of complete suppression at any CPI is compatible with behavioral results that show the presence of a probe can be detected even at short CPIs when it is not separately localizable. 2) At a CPI corresponding to echo threshold for human listeners (approximately 4 ms CPI) there was a considerable response to the probe, consistent with it being heard as a separately localizable sound at this CPI. 3) Full recovery for all neurons required a period much longer than that associated with the precedence effect. This is consistent with the relatively long time required for conditioners and probes to be heard with equal loudness. 5. Conditioners with either the best ITD or worst ITD were used to determine the effect of ITD on the response to the probe. The relative amounts of suppression caused by the two ITDs varied among neurons. Some neurons were suppressed about equally by both types of conditioners, others were suppressed more by a conditioner with the best ITD, and still others by a conditioner with the worst ITD. Because the best ITD and worst ITD presumably activate different pathways, these results suggest that different neurons receive a different balance of inhibition from different sources. 6. The recovery functions of neurons not sensitive to ITDs were similar to those of ITD-sensitive, neurons. This suggests that the time course of suppression may be common among different IC populations. 7. We also studied neurons in the SOC. Although many showed binaural interactions, none were sensitive to ITDs. Thus the response of this population may not be


2021 ◽  
Vol 33 (1) ◽  
pp. 146-157
Author(s):  
Chong Zhao ◽  
Geoffrey F. Woodman

It is not definitely known how direct-current stimulation causes its long-lasting effects. Here, we tested the hypothesis that the long time course of transcranial direct-current stimulation (tDCS) is because of the electrical field increasing the plasticity of the brain tissue. If this is the case, then we should see tDCS effects when humans need to encode information into long-term memory, but not at other times. We tested this hypothesis by delivering tDCS to the ventral visual stream of human participants during different tasks (i.e., recognition memory vs. visual search) and at different times during a memory task. We found that tDCS improved memory encoding, and the neural correlates thereof, but not retrieval. We also found that tDCS did not change the efficiency of information processing during visual search for a certain target object, a task that does not require the formation of new connections in the brain but instead relies on attention and object recognition mechanisms. Thus, our findings support the hypothesis that direct-current stimulation modulates brain activity by changing the underlying plasticity of the tissue.


2014 ◽  
Vol 21 (1) ◽  
pp. 83-91 ◽  
Author(s):  
Jeroen Van Schependom ◽  
Marie B D’hooghe ◽  
Krista Cleynhens ◽  
Mieke D’hooge ◽  
Marie-Claire Haelewyck ◽  
...  

Background: Cognitive impairment affects half of the multiple sclerosis (MS) patient population and is an important contributor to patients’ daily activities. Most cognitive impairment studies in MS are, however, cross-sectional or/and focused on the early disease stages. Objective: We aim to assess the time course of decline of different cognitive domains. Methods: We collected neuropsychological data on 514 MS patients to construct Kaplan-Meier survival curves of the tests included in the Neuropsychological Screening Battery for MS (NSBMS) and the Symbol Digit Modalities Test (SDMT). Cox-proportional hazard models were constructed to examine the influence of MS onset type, age at onset, gender, depression and level of education on the time course, expressed as age or disease. Results: Survival curves of tests focusing on information processing speed (IPS) declined significantly faster than tests with less specific demands of IPS. Median age for pathological decline was 56.2 years (95% CI: 54.4–58.2) on the SDMT and 63.9 years (95% CI: 60–66.9) on the CLTR, a memory task. Conclusion: In conclusion, IPS is the cognitive domain not only most widely affected by MS but it is also the first cognitive deficit to emerge in MS.


2020 ◽  
Author(s):  
Sihai Li ◽  
Christos Constantinidis ◽  
Xue-Lian Qi

ABSTRACTThe dorsolateral prefrontal cortex plays a critical role in spatial working memory and its activity predicts behavioral responses in delayed response tasks. Here we addressed whether this predictive ability extends to categorical judgments based on information retained in working memory, and is present in other brain areas. We trained monkeys in a novel, Match-Stay, Nonmatch-Go task, which required them to observe two stimuli presented in sequence with an intervening delay period between them. If the two stimuli were different, the monkeys had to saccade to the location of the second stimulus; if they were the same, they held fixation. Neurophysiological recordings were performed in areas 8a and 46 of the dlPFC and 7a and lateral intraparietal cortex (LIP) of the PPC. We hypothesized that random drifts causing the peak activity of the network to move away from the first stimulus location and towards the location of the second stimulus would result in categorical errors. Indeed, for both areas, when the first stimulus appeared in a neuron’s preferred location, the neuron showed significantly higher firing rates in correct than in error trials. When the first stimulus appeared at a nonpreferred location and the second stimulus at a preferred, activity in error trials was higher than in correct. The results indicate that the activity of both dlPFC and PPC neurons is predictive of categorical judgments of information maintained in working memory, and the magnitude of neuronal firing rate deviations is revealing of the contents of working memory as it determines performance.SIGNIFICANCE STATEMENTThe neural basis of working memory and the areas mediating this function is a topic of controversy. Persistent activity in the prefrontal cortex has traditionally been thought to be the neural correlate of working memory, however recent studies have proposed alternative mechanisms and brain areas. Here we show that persistent activity in both the dorsolateral prefrontal cortex and posterior parietal cortex predicts behavior in a working memory task that requires a categorical judgement. Our results offer support to the idea that a network of neurons in both areas act as an attractor network that maintains information in working memory, which informs behavior.


2021 ◽  
Author(s):  
Borja Rodriguez Herreros ◽  
Julia L Amengual ◽  
Jimena Lucrecia Vazquez-Anguiano ◽  
Silvio Ionta ◽  
Carlo Miniussi ◽  
...  

Converging evidence indicates that response inhibition may arise from the interaction of effortful proactive and reflexive reactive mechanisms. However, the distinction between the neural basis sustaining proactive and reactive inhibitory processes is still unclear. To identify reliable neural markers of proactive inhibition, we examined the behavioral and electrophysiological correlates elicited by manipulating the degree of inhibitory control in a task that involved the detection and amendment of errors. Restraining or encouraging the correction of errors did not affect the time course of the behavioral and neural correlates associated to reactive inhibition. We rather found that a bilateral and sustained decrease of corticomotor excitability was required for an effective proactive inhibitory control, whereas selective strategies were associated with defective response suppression. Our results provide behavioral and electrophysiological conclusive evidence of a comprehensive proactive inhibitory mechanism, with a distinctive underlying neural basis, governing the commission and amendment of errors. Together, these findings hint at a decisive role for changes in corticomotor excitability in determining whether an action will be successfully suppressed.


2018 ◽  
Author(s):  
Chi T. Ngo ◽  
Nora S. Newcombe ◽  
Ingrid R. Olson

2020 ◽  
Vol 100 (3) ◽  
pp. 1019-1063 ◽  
Author(s):  
Onur Güntürkün ◽  
Felix Ströckens ◽  
Sebastian Ocklenburg

Comparative studies on brain asymmetry date back to the 19th century but then largely disappeared due to the assumption that lateralization is uniquely human. Since the reemergence of this field in the 1970s, we learned that left-right differences of brain and behavior exist throughout the animal kingdom and pay off in terms of sensory, cognitive, and motor efficiency. Ontogenetically, lateralization starts in many species with asymmetrical expression patterns of genes within the Nodal cascade that set up the scene for later complex interactions of genetic, environmental, and epigenetic factors. These take effect during different time points of ontogeny and create asymmetries of neural networks in diverse species. As a result, depending on task demands, left- or right-hemispheric loops of feedforward or feedback projections are then activated and can temporarily dominate a neural process. In addition, asymmetries of commissural transfer can shape lateralized processes in each hemisphere. It is still unclear if interhemispheric interactions depend on an inhibition/excitation dichotomy or instead adjust the contralateral temporal neural structure to delay the other hemisphere or synchronize with it during joint action. As outlined in our review, novel animal models and approaches could be established in the last decades, and they already produced a substantial increase of knowledge. Since there is practically no realm of human perception, cognition, emotion, or action that is not affected by our lateralized neural organization, insights from these comparative studies are crucial to understand the functions and pathologies of our asymmetric brain.


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0211851 ◽  
Author(s):  
Renante Rondina II ◽  
Rosanna K. Olsen ◽  
Lingqian Li ◽  
Jed A. Meltzer ◽  
Jennifer D. Ryan

1997 ◽  
Vol 3 (1) ◽  
pp. 61-72 ◽  
Author(s):  
Jeffrey J. Hutsler ◽  
Michael S. Gazzaniga

Understanding the neural basis of language is one of the oldest and most difficult pursuits in neuroscience. Despite decades of accumulated data on aphasic subjects with cortical damage, we still know relatively little of how language functions are represented within the neural circuitry of the brain. A major issue of debate is whether language is a species-specific adaptation built into the neocortex, or a by-product of neocortical expansion. Cognitive studies emphasizing the universal nature of language abilities, the consistencies of language structure, and the consistent time course of language development have all indicated that language abilities are innate and must be built into the brain by evolutionary forces. Comparative studies of primates are equivocal since we have little evidence indicating that primate communication is homologous to human language systems. Much of this confusion is related to a lack of information regarding the neural basis of human communication. Recent anatomical data from human brains indicates that left hemisphere regions can have unique types of organization that may be responsible for functional specialization.


Sign in / Sign up

Export Citation Format

Share Document