Effects of ensilage of grass on performance and nutrient utilization by dairy cattle 1. Food intake and milk production

1995 ◽  
Vol 60 (3) ◽  
pp. 337-345 ◽  
Author(s):  
A. Cushnahan ◽  
C. S. Mayne

AbstractTwelve lactatiug dairy cows were offered either fresh grass (G) or grass silage prepared from the same pasture which had undergone either an extensive (E) or restricted (R) fermentation, in a three-period change-over design experiment. Ensilage resulted in a reduction in forage pH and water-soluble carbohydrate concentration and an increase in ammonia-nitrogen concentration. The ensiling techniques used ensured that both silages were well preserved with pH values for E and R of 3.81 and 4.08 respectively, while the respective lactic acid concentrations were 124.6 and 27.0 g/kg dry matter respectively. Whilst there were no significant differences in dry-matter intake between treatments, when corrected for losses of volatile compounds, animals offered silage with a restricted fermentation consumed their food at a higher rate of intake (P < 0.001) than did animals on the other treatments. It was also found that while there was no significant difference in milk yield between animals offered fresh or ensiled forage, both butterfat and protein concentration and yields of butterfat were significantly higher (P < 0.01 or greater) with grass and restricted fermented silage than with extensively fermented silage. Ensiling of herbage had no significant effect on apparent digestibility. It is concluded that ensiling of herbage per se had little effect on overall animal performance but pattern of silage fermentation resulted in alterations in milk composition.

2000 ◽  
Vol 51 (6) ◽  
pp. 749 ◽  
Author(s):  
T. A. Ciavarella ◽  
R. J. Simpson ◽  
H. Dove ◽  
B. J. Leury ◽  
I. M. Sims

The concentrations of water-soluble carbohydrate (WSC) and its components, starch, total nitrogen, and dry matter of phalaris (Phalaris aquatica L. cv. Australian) pasture were varied by shading for periods ranging from 38.5 to 46.5 h. In unshaded pasture, WSC concentrations were lowest at sunrise [103 mg/g dry matter (DM)] and increased until early afternoon (to 160 mg/g DM). Sucrose and starch increased in concentration during daylight, whilst the concentrations of glucose, fructose, fructan, and a component of WSC considered to be mainly the carbohydrate moiety of glycoside(s) were relatively constant. The concentrations of starch, and all components of WSC except sucrose, were reduced by shading, but increased to the concentrations observed in the unshaded pasture within 2–4 h after removal of the cover. The fructans present in phalaris were determined to be oligosaccharides of degree of polymerisation (DP) 3 and DP 4 and high molecular mass fructans with DP >10. Nitrogen concentration of shaded pasture was initially higher (4.7% DM) than in unshaded pasture (3.9% DM), but decreased after removal of the shade cover. Dry matter content was reduced in shaded pasture, partly due to increased retention of water on the exterior of plants. The experiment was a precursor for a grazing trial in which the WSC content of pasture was to be altered by shading. It indicated that shading would potentially alter WSC and N concentrations, and DM content, but would have only a relatively small impact on the digestibility of the pasture.


Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2096
Author(s):  
Fisun Koç ◽  
Emel Özkan Ünal ◽  
Berrin Okuyucu ◽  
Selim Esen ◽  
Raziye Işık

The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and stored at an ambient temperature of 25–30 °C are studied. After 45 days of ensiling, fermentation characteristics and aerobic stability of silages were measured, and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using the GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggests that the addition of kefir improves the aerobic stability of silages, even the initial water-soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mold formation. Enterococcus faecium, Pediococcus pentosaceous, and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening, while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, the application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.


Author(s):  
Fisun Koç ◽  
Emel Özkan Ünal ◽  
Berrin Okuyucu ◽  
Selim Esen ◽  
Raziye IŞIK

The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with four different application doses (untreated control (CON), 5.0, 5.7, and 6.0 log cfu g-1) on wilted alfalfa and stored at an ambient temperature of 25-30 &deg;C. After 45 days ensiling, fermentation characteristics and aerobic stability of silages were measured and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using GenomeLab&trade; GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggest that the addition of kefir improves the aerobic stability of silages even the initial water soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mould formation. Enterococcus faecium, Pediococcus pentosaceous, and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.


2021 ◽  
Vol 3 (1) ◽  
pp. 63-80
Author(s):  
Muhammad Fraz Ali ◽  
Muhammad Tahir

Water-soluble carbohydrates (WSC) concentration during the ensiling process is influenced by both controllable and uncontrollable factors such as temperature, moisture level, fertilizers, additives nutrients, and time of ensiling of silage. The WSC contents may vary among the different fodder and forage species. The ensiling temperature has a limiting impact on water-soluble carbohydrates and their concentration decrease with increasing temperature. Crops should be harvested at optimum moisture and dry matter level to reach the required concentration of water-soluble carbohydrates to produce organic acids. Water-soluble carbohydrate concentration decreased with the crop's maturity due to the accumulation of carbohydrates in the grains. The evening cut has more concentration of WSC than that of the morning cut due to the photosynthesis process. The contents of WSC can be increased by using different kinds of additives during the ensiling process. Ensiling time has not much influence on the water-soluble carbohydrates. To understand these factors, we have a detailed review of the factors affecting the WSC of silage.


1966 ◽  
Vol 66 (3) ◽  
pp. 351-357 ◽  
Author(s):  
W. Ellis Davies ◽  
G. ap Griffith ◽  
A. Ellington

The primary growth of eight varieties of three species–white clover (3), red clover (4) and lucerne (1)–was sampled at fortnightly intervals and the percentage dry matter, in vitro digestibility, crude protein, water soluble carbohydrates, P, Ca, K, Na and Mg were determined.Differences between species were nearly always significant and the general order of merit was white clover, red clover and lucerne. The exceptions were for dry-matter percentage where this order was reversed, and red clover had the lowest Na and highest Mg content.


2018 ◽  
Vol 19 (3) ◽  
pp. 324-335
Author(s):  
Jefferson Leonardo Rocha Alves ◽  
Rafael Henrique de Tonissi e Buschinelli de Goes ◽  
Antônio Campanha Martinez ◽  
Aguinaldo Yoshio Nakamura ◽  
Jefferson Rodrigues Gandra ◽  
...  

SUMMARY This study aimed to evaluate the rumen degradability of dry matter (DM), disappearance of neutral detergent fiber (NDF) of Tifton 85 hay, and fermentation parameters (pH and ruminal ammonia nitrogen) of sheep fed diets with inclusion of safflower grains (0, 7.50 and 15%). Three mixed breed lambs with average body weight of 35.50± 1.50 kg were used. The rumen degradability of dry matter and NDF of the Tifton 85 haywas analyzedby the disappearance of DM and NDF, and the kinetic parameters adjusted according to the first order asymptotic model. The samples were incubated in the rumen in descending order (96, 48, 24, 12, 6, 3, 0 hours). The determination of ruminal pH and ruminal ammonia nitrogen (RAN) was performed before feeding and 2, 4, 6 and 8 hours after feeding. Data of ruminal fermentation were tested by analysis of variance with repeated measures in time, at 5% probability. Ruminal pH values were not statistically different. When evaluating the RAN, there was a significant difference between the times and treatments for the diet with 15% safflower. The diets presented low effective degradability of DM and NDF with mean values of 18.02% and 47.40%, respectively. The safflower grain can be used up to 7.50% in the diets without altering the degradability and ruminal fermentation.


2018 ◽  
Vol 58 (6) ◽  
pp. 1043 ◽  
Author(s):  
A. Jonker ◽  
G. Molano ◽  
E. Sandoval ◽  
P. S. Taylor ◽  
C. Antwi ◽  
...  

Elevated water-soluble carbohydrate (WSC) concentration in the diet may affect rumen fermentation and consequently reduce methane (CH4) emissions. The objective of the present study was to determine CH4 emissions from male sheep (8 per treatment) in respiration chambers for 48 h and fed either a conventional diploid (CRG), a high-sugar diploid (HSG) or a tetraploid (TRG) perennial ryegrass cultivar, each offered at 0.7 or 1.0 kg dry matter (DM)/day during periods in early spring 2013 (P1), early autumn 2014 (P2) and late spring 2014 (P3). There was a significant (P < 0.001) interaction between cultivar and period for CH4 yield (g/kg DM intake). In P1 yield was 9% lower (P = 0.007) for sheep fed HSG than for sheep fed CRG or TRG, in P2 yield was 16% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG or HSG, and in P3 yield was 15% lower (P < 0.001) for sheep fed TRG than that for sheep fed CRG, with HSG-fed sheep being intermediate and not significantly different from either CRG or TRG. Despite there being a cultivar × period interaction, overall, CH4 yield was lower for sheep fed HSG or TRG than for sheep fed CRG (P < 0.001). There were no cultivar × level of feed offer interactions and, overall, yield of CH4 was 9% higher (P = 0.003) for sheep offered 0.7 than for sheep offered 1.0 kg DM/day. In each period, one or other of the high-WSC diploid (HSG) or tetraploid cultivars (TRG) gave lower CH4 yields than did the control diploid (CRG), suggesting that CH4 yield is reduced by characteristics of these cultivars. However, the effect was not consistently associated with either cultivar and could not be attributed to higher forage water-soluble carbohydrate concentrations.


Author(s):  
Maikon Figueredo Lemos ◽  
Alexandre Carneiro Leão de Mello ◽  
Adriana Guim ◽  
Márcio Vieira da Cunha ◽  
Pedro Henrique Ferreira da Silva ◽  
...  

Abstract: The objective of this work was to evaluate the nutritional value of silages from tall-sized and dwarf elephant grass (Pennisetum purpureum) genotypes, intercropped or not with butterfly pea (Clitoria ternatea). The experiment was performed in randomized complete blocks, in a 4x2 factorial arrangement (four genotypes × two cropping systems). The genotypes intercropped or not with butterfly pea were: IRI-381 and Elephant B, tall sized; and Taiwan A-146 2.37 and Mott, dwarf. Forage was harvested 60 days after regrowth. In the silage from Mott grass intercropped with butterfly pea, lower contents of lignin (78.1 g kg-1), neutral detergent fiber (636.0 g kg-1), and neutral detergent insoluble protein (13.15 g kg-1), besides a greater dry matter recovery (873.3 g kg-1), were observed. The silage from Taiwan A-146 2.37 intercropped with the legume showed a greater crude protein content (136.1 g kg-1). In both silages, the ammonia nitrogen contents were quite reduced (26.4 g kg-1). However, greater residual water-soluble carbohydrate contents were observed in the silages from the intercrop (1.85 mg g-1) and from the Mott grass monocrop (1.51 mg g-1). Moreover, there was a lower in vitro dry matter digestibility (676.7 g kg-1) for the silage from the intercrop. Dwarf genotypes increase the nutritional value of elephant grass silage, compared with the tall-sized ones. Intercropping with butterfly pea improves silage fermentation characteristics, despite reducing its digestibility. Therefore, the ensilage of dwarf Mott elephant grass intercropped with butterfly pea shows more promising results.


Sign in / Sign up

Export Citation Format

Share Document