scholarly journals Effect of Different Kefir Source on Fermentation, Aerobic Stability, and Microbial Community of Alfalfa Silage

Author(s):  
Fisun Koç ◽  
Emel Özkan Ünal ◽  
Berrin Okuyucu ◽  
Selim Esen ◽  
Raziye IŞIK

The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with four different application doses (untreated control (CON), 5.0, 5.7, and 6.0 log cfu g-1) on wilted alfalfa and stored at an ambient temperature of 25-30 °C. After 45 days ensiling, fermentation characteristics and aerobic stability of silages were measured and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggest that the addition of kefir improves the aerobic stability of silages even the initial water soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mould formation. Enterococcus faecium, Pediococcus pentosaceous, and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2096
Author(s):  
Fisun Koç ◽  
Emel Özkan Ünal ◽  
Berrin Okuyucu ◽  
Selim Esen ◽  
Raziye Işık

The present study has been one of the first attempts to thoroughly examine the effects of different kefir sources on fermentation characteristics, aerobic stability, and microbial communities of alfalfa silages. The effects of commercial kefir (CK) and homemade kefir culture (HK) applied with untreated a common control (CON) and three different application doses (5.0, 5.7, and 6.0 log cfu g−1) on wilted alfalfa and stored at an ambient temperature of 25–30 °C are studied. After 45 days of ensiling, fermentation characteristics and aerobic stability of silages were measured, and bacterial diversity was investigated by 16S ribosomal RNA gene sequencing using the GenomeLab™ GeXP platform. Both CK and HK accelerate more lactic acid production and reduced ammonia nitrogen concentration. Factor analysis of kefir sources suggests that the addition of kefir improves the aerobic stability of silages, even the initial water-soluble carbohydrate (WSC) content is inadequate via its antimicrobial effect on yeast and mold formation. Enterococcus faecium, Pediococcus pentosaceous, and Lactobacillus brevis were dominant bacterial species among the treated groups at silo opening, while Lactobacillus plantarum and Lactobacillus brevis became dominant bacterial species after 7 days of aerobic exposure. In conclusion, the application of kefir on alfalfa silages improves fermentation quality and aerobic stability even with low WSC content.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Y. Acosta Aragón ◽  
J. Jatkauskas ◽  
V. Vrotniakiene

The effect of inoculation on nutrient content, fermentation, aerobic stability, and beef cattle performance for whole-plant corn silage treated with a commercial product (blend of homo- and heterofermentative lactic acid bacteria, BSM, blend of Enterococcus faecium, Lactobacillus plantarum, and Lactobacillus brevis, DSM numbers 3530, 19457, and 23231, resp.), was compared to a control treatment with no silage additives (CT). The material had a DM of 323 g/kg, crude protein, and water-soluble carbohydrate concentrations of 87.9 and 110.5 g/kg DM, respectively. BSM increased the fermentation rate with a significantly deeper pH (P<0.01), a significant increase in the total organic acids concentration (P<0.05), more lactic acid (P<0.01), and numerically more acetic acid compared to CT. BSM significantly decreased the concentrations of butyric acid (P<0.01), ethanol, and ammonia-N compared to the CT. BSM-treated silage decreased DM by 3.0 % (P<0.01) and had a higher digestible energy and a higher metabolizable energy concentration by 2.3 (P<0.01) and 1.00 % (P<0.05), respectively, compared to untreated silage. Aerobic stability improved by more than 2 days in BSM silage. The DM intake of silage treated with BSM increased by 6.14 %, and improved weight gain and the feed conversion by 8.0 (P<0.01) and 3.4%.


1995 ◽  
Vol 60 (3) ◽  
pp. 337-345 ◽  
Author(s):  
A. Cushnahan ◽  
C. S. Mayne

AbstractTwelve lactatiug dairy cows were offered either fresh grass (G) or grass silage prepared from the same pasture which had undergone either an extensive (E) or restricted (R) fermentation, in a three-period change-over design experiment. Ensilage resulted in a reduction in forage pH and water-soluble carbohydrate concentration and an increase in ammonia-nitrogen concentration. The ensiling techniques used ensured that both silages were well preserved with pH values for E and R of 3.81 and 4.08 respectively, while the respective lactic acid concentrations were 124.6 and 27.0 g/kg dry matter respectively. Whilst there were no significant differences in dry-matter intake between treatments, when corrected for losses of volatile compounds, animals offered silage with a restricted fermentation consumed their food at a higher rate of intake (P < 0.001) than did animals on the other treatments. It was also found that while there was no significant difference in milk yield between animals offered fresh or ensiled forage, both butterfat and protein concentration and yields of butterfat were significantly higher (P < 0.01 or greater) with grass and restricted fermented silage than with extensively fermented silage. Ensiling of herbage had no significant effect on apparent digestibility. It is concluded that ensiling of herbage per se had little effect on overall animal performance but pattern of silage fermentation resulted in alterations in milk composition.


Agronomy ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1432
Author(s):  
Horst Auerbach ◽  
Peter Theobald

Whole-crop rye harvested before maturity represents a valuable forage for silage production. Due to the scarcity of data on fermentation characteristics and aerobic stability (ASTA) and the lack of information on mycotoxin formation during aeration of early-cut rye (ECR) silage after silo opening, we evaluated the effects of different additive types and compositions. Wilted forage was treated with various biological and chemical additives, ensiled in 1.5-L glass jars and stored for 64 days. Fermentation pattern, yeast and mould counts and ASTA were determined at silo opening. In total 34 mycotoxins were analysed in wilted forage and in silage before and after 240 h of air exposure. Chemical additives caused the lowest dry matter (DM) losses during fermentation accompanied with the lowest ethanol production and the highest water-soluble carbohydrate concentration. Aerobic deterioration, which started within two days after silo opening in silage left untreated and inoculated with homofermentative lactic acid bacteria, was prevented by the combined use of hetero- and homofermentative lactic acid bacteria and the chemical additive containing sodium nitrite, hexamethylene tetramine and potassium sorbate. Moreover, these two additives largely restricted the formation of the mycotoxin roquefortine C to < 0.05 mg kg−1 DM after aeration, whereas untreated silage contained 85.2 mg kg−1 DM.


Animals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1575
Author(s):  
Fuhou Li ◽  
Zitong Ding ◽  
Adegbola T. Adesogan ◽  
Wencan Ke ◽  
Yun Jiang ◽  
...  

The effects of two strains of class IIa bacteriocin-producing lactic acid bacteria, Lactobacillus delbrueckii F17 and Lactobacillus plantarum (BNCC 336943), or a non-bacteriocin Lactobacillus plantarum MTD/1 (NCIMB 40027), on fermentation quality, microbial counts, and aerobic stability of alfalfa silage were investigated. Alfalfa was harvested at the initial flowering stage, wilted to a dry matter concentration of approximately 32%, and chopped to 1 to 2 cm length. Chopped samples were treated with nothing (control, CON), Lactobacillus delbrueckii F17 (F17), Lactobacillus plantarum (BNCC 336943) (LPB), or Lactobacillus plantarum MTD/1 (NCIMB 40027) (LPN), each at an application rate of 1 × 106 colony-forming units/g of fresh weight. Each treatment was ensiled in quadruplicate in vacuum-sealed polyethylene bags packed with 500 g of fresh alfalfa per bag and ensiled at ambient temperature (25 ± 2 °C) for 3, 7, 14, 30, and 60 days. The samples were then subjected to an aerobic stability test after 60 days of ensiling. Compared with the CON silage, the inoculants reduced the pH after 14 days of ensiling. After 60 days, pH was lowest in the LPB-treated silage, followed by the F17 and LPN-treated silages. Inoculation of F17 increased concentrations of lactic acid in silages fermented for 7, 14, 30, and 60 days relative to other treatments, except for the LPN-treated silages ensiled for 30 and 60 days, in which the lactic acid concentrations were similar to that of F17 silage. Application of F17 and LPB decreased the number of yeast and mold relative to CON and LPN-treated silages. Compared with the CON silage, inoculant-treated silages had greater aerobic stability, water-soluble carbohydrate, and crude protein concentrations, and lower neutral detergent fiber, amino acid nitrogen, and ammonia nitrogen concentrations. The LPB-treated silage had the greatest aerobic stability followed by the F17-treated silage. Both class IIa bacteriocin producing inoculants improved alfalfa silage fermentation quality, reduced the growth of yeasts and molds, and improved the aerobic stability of the ensiled forage to a greater extent than the proven LPN inoculant. However, higher crude protein concentration and lower ammonia nitrogen concentration were observed in LPN-treated silage relative to other treatments.


2007 ◽  
Vol 47 (7) ◽  
pp. 825 ◽  
Author(s):  
J. M. Lee ◽  
D. J. Donaghy ◽  
J. R. Roche

The objective of the current study was to quantify the effects of greater herbage residuals in winter on leaf appearance rate, herbage accumulation and quality, and plant energy reserves, as well as quantifying the effects nitrogen (N), or phosphorus (P) and sulfur (S) fertilisers had on the above measures. Ten pasture areas were grazed to different residual masses (1260 ± 101 and 1868 ± 139 kg DM/ha, Severe and Lax, respectively) over five consecutive days by dry dairy cows. Two randomly located subplots within each grazing area were fertilised with either 50 kg N/ha (N treatment) or 50 kg N/ha, 31 kg S/ha plus 26 kg P/ha (N + S + P treatment) on the day immediately following defoliation (day 1), and were compared with a control subplot. Neither growth rate (15.1 ± 8.1 kg DM/ha.day), nor leaf appearance rate (15.1 ± 0.3 days per new leaf) differed between treatments. As a result, herbage accumulated over the 49 days of regrowth was similar across grazing treatments and averaged 726 kg DM/ha. Application of N + S + P tended to increase total herbage accumulated during regrowth compared with either the control or N treatment subplots (860 v. 675 and 643 kg DM/ha, respectively), likely a result of increased tiller density. Swards defoliated more severely had lower initial water-soluble carbohydrate (WSC) concentrations compared with swards laxly defoliated, but this difference had disappeared before appearance of the third new leaf. Herbage quality improved in the Severe treatment subplots after emergence of the third new leaf, with higher digestibility, greater WSC and metabolisable energy, and lower fibre content than in laxly grazed subplots.


Agriculture ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 518
Author(s):  
Vanessa P. Silva ◽  
Odilon G. Pereira ◽  
Eliana S. Leandro ◽  
Rosinea A. Paula ◽  
Mariele C. N. Agarussi ◽  
...  

The first part of the study aimed to isolate, characterize, and identify wild lactic acid bacteria (LAB) strains from alfalfa silage produced in a tropical area. LAB strains were isolated from alfalfa silage ensiled for 1, 3, 7, 14, 28, and 56 days (d) and were identified by sequencing the 16S rRNA gene. The second part aimed to investigate the effects of wild LAB strains on the nutritive and fermentative characteristics of alfalfa silage. This trial was conducted according to a completely randomized design in a 4 × 2 factorial scheme [four inoculants (I) × two harvests (H)], (n = 4). The inoculants were: (1) no inoculant (CTRL), (2) Lactobacillus pentosus (AV 14.17); (3) L. pentosus + Lactobacillus brevis + Pediococcus acidilactici (Combo); and (4) commercial inoculant (CI). Alfalfa forage (7 kg) was ensiled in 10 L buckets and opened after 90 d. Seventy-seven strains were isolated. Pediococcus, Lactobacillus, and Weissella represented 52.0, 24.7, and 20.8% of the isolates, respectively. For the first harvest, Combo, CI, and all inoculated silages showed lower acid detergent fiber ADF, neutral detergent fiber (NDF), and ammonia nitrogen (NH3-N), respectively. Silage fermented with AV14.17 presented greater residual water-soluble carbohydrate (WSC) in the second harvest and showed the lowest pH in both harvests. AV14.17 strain has potential as an inoculant for alfalfa silage production.


2011 ◽  
Vol 236-238 ◽  
pp. 305-308
Author(s):  
Jian Guo Zhang ◽  
Qin Hua Liu ◽  
Fu Yu Yang

To investigate the nutritive and ensiling characteristics of sweet corn processing by-products, the chemical compositions of corn bracts and cobs were analyzed and the effects of wilting and additives on the fermentation quality and aerobic stability were measured. The research results showed: Corn bracts and cobs had low fiber content and high nitrogen free extract content (> 61% DM),with high nutritive value; Corn bracts and cobs were of high water soluble carbohydrate contents (> 10% DM), low buffering capacity (< 150 mE/kg DM), more lactic acid bacteria (> 107cfu/g FM), they might be well preserved without any treatments, but their aerobic stability was poor; Barn and lactic acid bacteria addition had few effect on the fermentation except for reducing butyric acid content, wilting tended to increase lactic acid content and reduce the contents of volatile fatty acids.


2014 ◽  
Vol 54 (2) ◽  
pp. 165
Author(s):  
H. Mohammadzadeh ◽  
M. Khorvash ◽  
G. R. Ghorbani

A multi-species lactic acid bacterial inoculant (Lactisil maize, LM) was applied to whole-crop corn at different maturities in laboratory silos, to evaluate its effects on biochemical characteristics and aerobic stability. The corn crop was harvested at hard dough (HD, 253.1 g/DM kg), one-third milkline (ML, 293.7 g/DM kg) and one-third milkline with a killing frost (MLF, 297.6 g/DM kg). Crops were chopped to a 2.5-cm theoretical cut length, subsampled and treated with two levels of inoculant (LB1 = 1.5 × 105 cfu/g forage, LB2 = 3 × 105 cfu/g forage) or untreated (WO). The chemical composition of MLF crops was very similar to that of ML crops. However, lower (P < 0.01) numbers of lactic acid bacteria and higher numbers of yeast were enumerated in MLF than in ML crops. Higher percentages of DM and neutral detergent fibre and higher pH, but lower (P < 0.01) concentrations of water soluble carbohydrate and crude protein were measured in ML and MLF crops than in HD crops. Application of the inoculant increased (P < 0.01) concentrations of volatile fatty acids, neutral detergent fibre and acid detergent fibre in silages. Lactic acid concentration increased (P < 0.01) in HD treatments with an increasing level of inoculant. In contrast, the highest (P < 0.01) lactic acid concentration was measured in LB1 treatment compared with WO and LB2 in ML and MLF silages. Silages prepared from ML and MLF crops had higher (P < 0.01) lactic and acetic acid concentrations but lower (P < 0.01) butyric acid concentrations than did those prepared from HD. The pH in LB1 and LB2 silages was higher (P < 0.01) than that measured in WO silages. Aerobic stability was not influenced by inoculant treatment but low-DM silages were more (P < 0.01) resistant to spoilage. Frost-killed corn crops had a good potential to produce well fermented silage. Using LM resulted in silages with slightly higher fermentation products but it failed to improve aerobic stability of silage after 120 days of ensiling. These results indicated that inoculation of corn crops with LM for a short-duration ensilage period cannot enhance aerobic stability of silages due to insufficient acetic acid production from lactic acid conversion.


Sign in / Sign up

Export Citation Format

Share Document