Electron Microscopy of the Morphology and Extrapulmonary Manifestations of the Bacterium of Legionnaires' Disease

Author(s):  
John H. L. Watson ◽  
C.N. Sun ◽  
H.J. White

This is a brief report of continuing investigations by SEM and TEM1, 2, 3 of the morphology and possible extrapulmonary sites in situ of the Legionnaires' disease bacterium of proposed genus and species Legionella pneumophila.4 Tissue from lung, heart, spleen, lymph nodes, kidney and liver have been thoroughly searched for the bacterium in situ, taken at autopsy from a patient who died of the disease confirmed as Legionnaires' by specific fluorescent antibody and silver impregnation staining.

2001 ◽  
Vol 114 (24) ◽  
pp. 4637-4650 ◽  
Author(s):  
Lewis G. Tilney ◽  
Omar S. Harb ◽  
Patricia S. Connelly ◽  
Camenzind G. Robinson ◽  
Craig R. Roy

Within five minutes of macrophage infection by Legionella pneumophila, the bacterium responsible for Legionnaires’ disease, elements of the rough endoplasmic reticulum (RER) and mitochondria attach to the surface of the bacteria-enclosed phagosome. Connecting these abutting membranes are tiny hairs, which are frequently periodic like the rungs of a ladder. These connections are stable and of high affinity - phagosomes from infected macrophages remain connected to the ER and mitochondria (as they were in situ) even after infected macrophages are homogenized. Thin sections through the plasma and phagosomal membranes show that the phagosomal membrane is thicker (72±2 Å) than the ER and mitochondrial membranes (60±2 Å), presumably owing to the lack of cholesterol, sphingolipids and glycolipids in the ER. Interestingly, within 15 minutes of infection, the phagosomal membrane changes thickness to resemble that of the attached ER vesicles. Only later (e.g. after six hours) does the ER-phagosome association become less frequent. Instead ribosomes stud the former phagosomal membrane and L. pneumophila reside directly in the rough ER. Examination of phagosomes of various L. pneumophila mutants suggests that this membrane conversion is a four-stage process used by L. pneumophila to establish itself in the RER and to survive intracellularly. But what is particularly interesting is that L. pneumophila is exploiting a poorly characterized naturally occuring cellular process.


2001 ◽  
Vol 69 (4) ◽  
pp. 2116-2122 ◽  
Author(s):  
Claudia Dietrich ◽  
Klaus Heuner ◽  
Bettina C. Brand ◽  
Jörg Hacker ◽  
Michael Steinert

ABSTRACT Legionella pneumophila, the etiologic agent of Legionnaires' disease, contains a single, monopolar flagellum which is composed of one major subunit, the FlaA protein. To evaluate the role of the flagellum in the pathogenesis and ecology ofLegionella, the flaA gene of L. pneumophila Corby was mutagenized by introduction of a kanamycin resistance cassette. Immunoblots with antiflagellin-specific polyclonal antiserum, electron microscopy, and motility assays confirmed that the specific flagellar mutant L. pneumophila Corby KH3 was nonflagellated. The redelivery of the intact flaA gene into the chromosome (L. pneumophila Corby CD10) completely restored flagellation and motility. Coculture studies showed that the invasion efficiency of the flaA mutant was moderately reduced in amoebae and severely reduced in HL-60 cells. In contrast, adhesion and the intracellular rate of replication remained unaffected. Taking these results together, we have demonstrated that the flagellum of L. pneumophila positively affects the establishment of infection by facilitating the encounter of the host cell as well as by enhancing the invasion capacity.


1996 ◽  
Vol 116 (2) ◽  
pp. 185-192 ◽  
Author(s):  
J. C. Bell ◽  
L. R. Jorm ◽  
M. Williamson ◽  
N. H. Shaw ◽  
D. L. J. Kazandjian ◽  
...  

SUMMARYAn outbreak of legionellosis associated with a hotel in Sydney, Australia, and the subsequent epidemiological and environmental investigations are described. Four cases of Legionnaires' disease were notified to the Public Health Unit. A cross-sectional study of 184 people who attended a seminar at the hotel was carried out. Serological and questionnaire data were obtained for 152 (83%) of these. Twenty-eight (18%) respondents reported symptoms compatible with legionellosis. Thirty-three subjects (22%) had indirect fluorescent antibody (IFA) titres toLegionella pneumophilaserogroup 1 (Lp-1) of 128 or higher. The only site which those with symptoms of legionellosis and IFA titre ≥128 were more likely to have visited than controls was the hotel car park (adjusted odds ratio [OR] 14·7, 95% confidence interval [CI]: 1·8–123·1). Those with symptoms compatible with legionellosis, but whose IFA titres were < 128 were also more likely to have visited the hotel car park (adjusted OR 4·4, 95% CI: 1·5–12·9). Seroprevalence of Lp-1 antibodies was higher in those who attended the seminar than in a population sample of similar age. Findings suggested that the 4 cases represented a small fraction of all those infected, and highlighted difficulties in defining illness caused by Lp-1 and in interpreting serology.


Author(s):  
Mariam Saad ◽  
Deanna Chinerman ◽  
Maryam Tabrizian ◽  
Sebastien P. Faucher

ABSTRACTLegionella pneumophila (Lp) is a water borne bacterium causing Legionnaires’ Disease (LD) in humans. Rapid detection of Lp in water system is essential to reduce the risk of LD outbreaks. The methods currently available require expert skills and are time intensive, thus delaying intervention. In situ detection of Lp by biosensor would allow rapid implementation of control strategies. To this end, a biorecognition element is required. Aptamers are considered promising biorecognition molecules for biosensing. Aptamers are short oligonucleotide sequence folding into a specific structure and are able to bind to specific molecules. Currently no aptamer and thus no aptamer-based technology exists for the detection of Lp. In this study, Systemic Evolution of Ligands through EXponential enrichment (SELEX) was used to identify aptamers binding specifically to Lp. Ten rounds of positive selection and two rounds of counter-selection against two Pseudomonas species were performed. Two aptamers binding strongly to Lp were identified with KD of 116 and 135 nM. Binding specificity of these two aptamers to Lp was confirmed by flow cytometry and fluorescence microscopy. Therefore, these two aptamers are promising biorecognition molecules for the detection of Lp in water systems.


1989 ◽  
Vol 10 (9) ◽  
pp. 408-415 ◽  
Author(s):  
J.B. Wright ◽  
I. Ruseska ◽  
M.A. Athar ◽  
S. Corbett ◽  
J.W. Costerton

AbstractLegionella pneumophilacontinues to play a role in both community- and nosocomially-acquired pneumonia. We investigated the ability ofL pneumophilato adhere to various types of materials such as those found in the hospital air-cooling and potable water distribution systems. Through the use of a unique sampling apparatus, we were able to regularly acquire planktonic and sessile samples and determine the numbers of bacteria present in both populations, in vitro and in situ.Portions of these apparatuses could be aseptically removed for examination by scanning electron microscopy, or for the determination of the number of viable adherentL pneumophila.The number of bacteria present in each sample was determined by direct plate count, with presumptiveL pneumophilacolonies being positively identified by direct fluorescent antibody staining techniques.The results demonstrated that not only are legionellae capable of colonizing various metallic and nonmetallic surfaces but that they are preferentially found on surfaces. Surface-adherent bacteria may play a profound role as a reservoir of these potential pathogens in aquatic environments. Furthermore, these results suggest that any comprehensive legionella monitoring program must include not only water samples but also an examination of the adherent populations.


Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Author(s):  
D.E. Brownlee ◽  
A.L. Albee

Comets are primitive, kilometer-sized bodies that formed in the outer regions of the solar system. Composed of ice and dust, comets are generally believed to be relic building blocks of the outer solar system that have been preserved at cryogenic temperatures since the formation of the Sun and planets. The analysis of cometary material is particularly important because the properties of cometary material provide direct information on the processes and environments that formed and influenced solid matter both in the early solar system and in the interstellar environments that preceded it.The first direct analyses of proven comet dust were made during the Soviet and European spacecraft encounters with Comet Halley in 1986. These missions carried time-of-flight mass spectrometers that measured mass spectra of individual micron and smaller particles. The Halley measurements were semi-quantitative but they showed that comet dust is a complex fine-grained mixture of silicates and organic material. A full understanding of comet dust will require detailed morphological, mineralogical, elemental and isotopic analysis at the finest possible scale. Electron microscopy and related microbeam techniques will play key roles in the analysis. The present and future of electron microscopy of comet samples involves laboratory study of micrometeorites collected in the stratosphere, in-situ SEM analysis of particles collected at a comet and laboratory study of samples collected from a comet and returned to the Earth for detailed study.


Author(s):  
N. Ridley ◽  
S.A. Al-Salman ◽  
G.W. Lorimer

The application of the technique of analytical electron microscopy to the study of partitioning of Mn (1) and Cr (2) during the austenite-pearlite transformation in eutectoid steels has been described in previous papers. In both of these investigations, ‘in-situ’ analyses of individual cementite and ferrite plates in thin foils showed that the alloying elements partitioned preferentially to cementite at the transformation front at higher reaction temperatures. At lower temperatures partitioning did not occur and it was possible to identify a ‘no-partition’ temperature for each of the steels examined.In the present work partitioning during the pearlite transformation has been studied in a eutectoid steel containing 1.95 wt% Si. Measurements of pearlite interlamellar spacings showed, however, that except at the highest reaction temperatures the spacing would be too small to make the in-situ analysis of individual cementite plates possible, without interference from adjacent ferrite lamellae. The minimum diameter of the analysis probe on the instrument used, an EMMA-4 analytical electron microscope, was approximately 100 nm.


Sign in / Sign up

Export Citation Format

Share Document