Microscopical Examination of a Super Austenitic Stainless Steel

1997 ◽  
Vol 3 (S2) ◽  
pp. 687-688
Author(s):  
G. Fourlaris ◽  
T. Gladman ◽  
M. Maylin

Stainless steels have significant applications due to their good corrosion resistance. However, for applications in a marine environment, i.e. for certain types of large naval structures, in addition to the good corrosion resistance, other requirements are imposed on the candidate material such as high strength and toughness coupled with suitable magnetic characteristics.It has been demonstrated in earlier publications that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic -ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. However, the 2205 type DSS exhibits “ marginal” corrosion protection in a marine environment as well as exhibiting some measurable ferromagnetic response. Therefore, a study has been undertaken to examine the mechanical properties and microstructures obtained in a super austenitic stainless steel of the 254 SMO type.

Author(s):  
G. Fourlaris ◽  
T. Gladman ◽  
M. Maylin ◽  
R. Lane ◽  
G. D. Papadimitriou

It is well known that, due to the good corrosion resistance certain grades of stainless steels have significant applications in marine environments. For the development of certain large naval structures, in addition to the good corrosion resistance, other requirements are imposed such as high strength and toughness coupled with suitable magnetic characteristics.It has been demonstrated in an earlier publication that significant improvements in the coercivity, maximum induction and remanence values can be achieved, by using a 2205 type Duplex austenitic -ferritic stainless steel (DSS) instead of the low alloy medium carbon steels currently being used. These improvements are achieved in the as received 2205 material, and after small amounts of cold rolling have been applied, to increase the strength. In addition, the modification of the duplex austenitic-ferritic microstructure, via a heat treatment route, results in a finer austenite ‘island’ dispersion in a ferritic matrix and provides an attractive option for further modification of the magnetic characteristics of the material.


Alloy Digest ◽  
1995 ◽  
Vol 44 (7) ◽  

Abstract URANUS B66 is a high strength super austenitic stainless steel with a pitting resistance equivalent number equal or greater than 50. Applications involve resisting sea water or acid chloride environments. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-602. Producer or source: Creusot-Marrel.


Alloy Digest ◽  
1989 ◽  
Vol 38 (10) ◽  

Abstract ARMCO PH 15-7 Mo is a semi-austenitic stainless steel that is precipitation hardenable, providing high strength and hardness with minimum heat treat distortion. It has good corrosion resistance. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-75. Producer or source: Armco Advanced Materials Corporation. Originally published June 1958, revised October 1989.


Author(s):  
G. Fourlaris ◽  
T. Gladman

Stainless steels have widespread applications due to their good corrosion resistance, but for certain types of large naval constructions, other requirements are imposed such as high strength and toughness , and modified magnetic characteristics.The magnetic characteristics of a 302 type metastable austenitic stainless steel has been assessed after various cold rolling treatments designed to increase strength by strain inducement of martensite. A grade 817M40 low alloy medium carbon steel was used as a reference material.The metastable austenitic stainless steel after solution treatment possesses a fully austenitic microstructure. However its tensile strength , in the solution treated condition , is low.Cold rolling results in the strain induced transformation to α’- martensite in austenitic matrix and enhances the tensile strength. However , α’-martensite is ferromagnetic , and its introduction to an otherwise fully paramagnetic matrix alters the magnetic response of the material. An example of the mixed martensitic-retained austenitic microstructure obtained after the cold rolling experiment is provided in the SEM micrograph of Figure 1.


Alloy Digest ◽  
1961 ◽  
Vol 10 (12) ◽  

Abstract Armco 21-6-9 is an austenitic stainless steel alloy designed for use in applications where a combination of high strength and corrosion resistance is desired. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-125. Producer or source: Armco Inc., Eastern Steel Division.


Alloy Digest ◽  
1999 ◽  
Vol 48 (9) ◽  

Abstract ALZ 305 is an austenitic stainless steel with excellent formability and good corrosion resistance, toughness, and mechanical properties. The higher amount of nickel in this grade enables high deep-drawing deformation without intermediate annealing. This datasheet provides information on composition, physical properties, and elasticity. It also includes information on corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-762. Producer or source: ALZ nv.


Alloy Digest ◽  
1988 ◽  
Vol 37 (6) ◽  

Abstract Allegheny Ludlum AL 15-7 Alloy is a chromium-nickel-molybdenum-aluminum semi-austenitic stainless steel. It is heat treatable to high strength and it has a moderate level of corrosion resistance. It is available both as a conventionally melted product and as vacuum arc or electroslag refined material. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-496. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
2006 ◽  
Vol 55 (1) ◽  

Abstract CLC 18.10LN is an austenitic stainless steel with 18% Cr, 9.5% Ni, and 0.14% N to provide good corrosion resistance at strengths above the other low-carbon stainless steels. This datasheet provides information on composition, physical properties, elasticity, tensile properties, and shear strength as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, machining, and joining. Filing Code: SS-950. Producer or source: Industeel USA, LLC.


Alloy Digest ◽  
1974 ◽  
Vol 23 (2) ◽  

Abstract MANIFLEX-FM is a free-machining chromium-nickel austenitic stainless steel which offers excellent high-temperature strength and hardness with good corrosion resistance to combustion products. It is widely used exhaust components in automotive engines. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: SS-291. Producer or source: Carpenter.


Alloy Digest ◽  
2006 ◽  
Vol 55 (9) ◽  

Abstract Custom 475 stainless is a premium melted, high-strength, martensitic, precipitation-hardenable stainless steel. It provides good corrosion resistance and was designed to achieve a tensile strength up to 2000 MPa (290 ksi), combined with good toughness and ductility when in the H975 condition, peak aged at 525 deg C (975 deg F). Other combinations of strength are possible by applying aging temperatures up to 595 deg C (1100 deg F). The alloy is available in strip, wire, and small diameter bar. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on corrosion resistance as well as forming, heat treating, and machining. Filing Code: SS-974. Producer or source: Carpenter Technology Corporation.


Sign in / Sign up

Export Citation Format

Share Document