Tutorial: Tem Specimen Preparation in the Physical Sciencestripod Polishing and Ion Milling

1998 ◽  
Vol 4 (S2) ◽  
pp. 876-877
Author(s):  
Ron Anderson

Over the past few decades, the demands of modern analytical electron microscopy have increased the need for TEM specimen preparation techniques with a minimum of misleading artifacts in terms of chemical microanalysis. At the same time, the demands of modern industrial materials, be they semiconductor, polymeric or composite in nature, call for speed, flexibility and high spatial resolution as well. The response from the electron microscopy community, especially that portion in the private sector, have been to devise (or advocate) radically different forms of TEM thin specimen preparation from that of classic replication, electropolishing and ion thinning.This tutorial sets forth the goals of TEM specimen preparation, and the requirements for a "good" TEM specimen. The strategic choices governing which technique to use for preparing a wide variety of specimens will be covered. A TEM Specimen Preparation Flow Chart will be used to plot a course that makes optimum use of the preparation techniques available as a function of the type of specimen to be prepared.

Author(s):  
A. T. Fisher ◽  
P. Angelini

Analytical electron microscopy (AEM) of the near surface microstructure of ion implanted ceramics can provide much information about these materials. Backthinning of specimens results in relatively large thin areas for analysis of precipitates, voids, dislocations, depth profiles of implanted species and other features. One of the most critical stages in the backthinning process is the ion milling procedure. Material sputtered during ion milling can redeposit on the back surface thereby contaminating the specimen with impurities such as Fe, Cr, Ni, Mo, Si, etc. These impurities may originate from the specimen, specimen platform and clamping plates, vacuum system, and other components. The contamination may take the form of discrete particles or continuous films [Fig. 1] and compromises many of the compositional and microstructural analyses. A method is being developed to protect the implanted surface by coating it with NaCl prior to backthinning. Impurities which deposit on the continuous NaCl film during ion milling are removed by immersing the specimen in water and floating the contaminants from the specimen as the salt dissolves.


Author(s):  
D.I. Potter ◽  
M. Ahmed ◽  
K. Ruffing

Ion implantation, used extensively for the past decade in fabricating semiconductor devices, now provides a unique means for altering the near-surface chemical compositions and microstructures of metals. These alterations often significantly improve physical properties that depend on the surface of the material; for example, catalysis, corrosion, oxidation, hardness, friction and wear. Frequently the mechanisms causing these beneficial alterations and property changes remain obscure and much of the current research in the area of ion implantation metallurgy is aimed at identifying such mechanisms. Investigators thus confront two immediate questions: To what extent is the chemical composition changed by implantation? What is the resulting microstructure? These two questions can be investigated very fruitfully with analytical electron microscopy (AEM), as described below.


1997 ◽  
Vol 3 (S2) ◽  
pp. 357-358
Author(s):  
C. Amy Hunt

The demand for TEM analysis in semiconductor failure analysis is rising sharply due to the shrinking size of devices. A well-prepared sample is a necessity for getting meaningful results. In the past decades, a significant amount of effort has been invested in improving sample preparation techniques for TEM specimens, especially precision cross-sectioning techniques. The most common methods of preparation are mechanical dimpling & ion milling, focused ion beam milling (FIBXTEM), and wedge mechanical polishing. Each precision XTEM technique has important advantages and limitations that must be considered for each sample.The concept for both dimpling & ion milling and wedge specimen preparation techniques is similar. Both techniques utilize mechanical polishing to remove the majority of the unwanted material, followed by ion milling to assist in final polishing or cleaning. Dimpling & ion milling produces the highest quality samples and is a relatively easy technique to master.


1993 ◽  
Vol 66 (5) ◽  
pp. 837-848 ◽  
Author(s):  
T. Kretzschmar ◽  
K. Hummel ◽  
F. Hofer

Abstract Brass samples (thin foils or plates) were pretreated either by etching with aqueous HC1 or by rubbing with emery cloth. A mixture of cis-l,4-polybutadiene with sulfur and N,N-dicyclohexyl-2-benzothiazylsulfenamide was vulcanized in contact with the brass surfaces. The bonding layers were investigated by analytical electron microscopy (AEM). Two preparation techniques for AEM were used, namely cryo-ultramicrotomy to obtain cross sections (applied to foils), or separating ultrathin surface layers with an aqueous HCl/FeCl3 solution (applied to plates). Across the bonding layers, various crystallographic structures and chemical compositions were found, depending on the pretreatment of the brass.


Author(s):  
P. S. Sklad ◽  
J. Bentley ◽  
A. T. Fisher ◽  
G. L. Lehman

The transition metal diboride TiB2 is characterized by high hardness and high melting point (3253 K) . These properties make this material attractive for applications such as valve components in coal liquefaction plants and cutting tools. Liquid phase hot pressing using nickel as the fluidizing medium allows densification at lower temperatures than when using TiB2 powders alone, but the nickel and TiB2 react to form a complex multiphase microstructure. The purpose of this investigation was to identify the nickel-rich binder phase. The material examined was taken from a cylindrical compact hot pressed at ∼1720 K. During pressing most of the original 15 mol % Ni exuded from the initial mixtures. Specimens 3 mm dia were prepared for analytical electron microscopy (AEM) examination by mechanical lapping followed by ion milling.A typical microstructure of the TiB2-Ni composite examined at 120 kv by conventional transmission electron microscopy (TEM) is shown in Fig. 1. The microstructure is characterized by TiB2 grains bonded by a second phase which was observed at multiple grain intersections. X-ray energy dispersive spectroscopy (EDS) measurements were made using a Philips EM400T/FEG. probe sizes of ∼10 nm dia and probe currents of ∼5 nA were used so that measurements could be made in thin regions of the binder phase, where beam broadening was small. Typical x-ray spectra from an intergranular region and an adjacent TiB2 grain are shown in Fig. 2. The results of standardless quantitative analyses of binder phase spectra indicated a composition (for Z > 11) of at least 95% Ni.


2001 ◽  
Vol 7 (S2) ◽  
pp. 250-251
Author(s):  
S. Abolhassani ◽  
R. Schäublin ◽  
F. Groeschel ◽  
G. Bart

The understanding of the mechanism of oxidation of Zircaloy materials provides an important support for the corrosion control of the fuel claddings in the light water nuclear reactors. Many investigations are devoted to the study of the oxidation of these materials. One of the important aspects of these studies, is the analysis of the metal-oxide interface, which produces information about the nature of the oxide formed at the interface, at different stages of oxidation and the influence of the oxide structure and morphology on the formation and growth of the oxide.In the present study, analytical electron microscopy (AEM) and high resolution transmission electron microscopy (HRTEM) are used to examine the metal-oxide interface of an un-irradiated Zircaloy-4 material, oxidized in autoclave, under pressurized water reactor conditions.The TEM specimen preparation for the interface analysis is an important step of the investigation, since the transverse section required for such observation should be sufficiently thin exactly at the position of the interface.


1985 ◽  
Vol 58 ◽  
Author(s):  
R.C. Dickenson ◽  
K.R. Lawless ◽  
G.C. Hadjiipanayis

Iron/rare-earth/boron permanent magnet materials have recently been delveloped to reduce the need for the strategic element cobalt, which was previously the primary canponent of high-energy magnets. These materials are generally produced by annealing rapidly solidified ribbons or by conventional powder metallurgy techniques. This paper will report results from an analytical electron microscopy characterization undertaken to establish the relationship between the magnetic properties and the microstructure of two iron/rare-earth/boron (Fe/RE/B) alloys. Ribbons of Fe75Pr15B10 and Fe77Tb15B8 were produced by melt-spinning. To obtain optimum magnetic properties, both alloys were then annealed at 700°C, the FePrB ribbons for 6 minutes and the FeTbB ribbons for 90 minutes. Foils for transmission electron microscopy were prepared by ion-milling the ribbons on a cold stage and examined using a Philips 400T TEM/STEM equipped with an energy dispersive x-ray unit.


2011 ◽  
Vol 17 (S2) ◽  
pp. 802-803
Author(s):  
M Walls ◽  
F de la Peña

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


Sign in / Sign up

Export Citation Format

Share Document