Broad Ion Beam “Slope Cutting” Technique for Cross Sectional SEM Specimen Preparation of Semiconductors

2000 ◽  
Vol 6 (S2) ◽  
pp. 496-497 ◽  
Author(s):  
R. Alani ◽  
W. Hauffe ◽  
R. J. Mitro

Cross sectional SEM specimens are routinely prepared for process monitoring/development, fabrication problem solving and failure analysis in semiconductor industries. A considerable variety of established methods are already in place for production of these specimens. They include: mechanical polishing, manual/automated cleaving, wet chemical etching and focused ion beam (FIB) milling. This report covers a new approach to the preparation of such specimens utilizing a broad ion beam technique. The technique consists of three steps, I) perpendicular “slope cutting” to expose the profile of the layers/features in the starting wafer, II) etching of the cut surface to delineate the microstructures and III) coating the specimen with a conductive thin film to prevent charging effects in the SEM. All three steps are carried out in a dedicated broad ion beam instrument, designed initially to etch and coat SEM specimens in one vacuum chamber [1]. The entire three-step process can be completed in one hour.

Author(s):  
R. Alani ◽  
R. J. Mitro ◽  
W. Hauffe

Abstract The semiconductor industry routinely prepares crosssectional SEM specimens using several traditional techniques. Included in these are cleaving, mechanical polishing, wet chemical etching and focused ion beam (FIB) milling. This presentation deals with a new alternate method for preparation of SEM semiconductor specimens based upon a dedicated broad ion beam instrument. Offered initially as an alternative to wet chemical etching, the instrument was designed to etch and coat SEM and metallographic specimens in one vacuum chamber using inert gas (Ar) ion beams. The system has recently undergone further enhancement by introducing iodine Reactive Ion Beam Etching (RIBE) producing much improved etching/cleaning capabilities compared with inert gas ion beam etching. Further results indicate Ar broad ion beam etching can offer a rapid, simple, more affordable alternative (to FIB machines) for precision cross sections and for “slope cutting,” a technique producing large cross-sections within a short time frame. The overall effectiveness of this system for iodine RIBE etching, for precision cross sectioning and “slope cutting” will be shown for a number of traditional and advanced semiconductor devices.


1998 ◽  
Vol 4 (S2) ◽  
pp. 864-865
Author(s):  
K. Ogura ◽  
R. Alani

The cross-sectioning of semiconductor wafers for SEM studies has traditionally been carried out by tedious and laborious mechanical grinding and polishing techniques. The mechanically polished surfaces are treated using a “wet chemical” etching method to enhance and delineate certain features or layers in a given specimen. The etched specimens are then coated by conductive layers to prevent charging during SEM examination. As an alternative to “wet chemical etching”, broad-ion beam etching techniques have been developed for surface treatment of mechanically polished specimens. More specifically, we have reported [1] the utilization of a combined process of broad-ion beam etching and coating of mechanically cross sectioned semiconductors in a single vacuum chamber. As a further progress to that work, we report a rapid and reliable technique for preparing precision SEM cross sections. The technique is based on perpendicular broad-ion beam milling of cleaved wafers to expose any desired cross-section through a given feature of the specimen.


1998 ◽  
Vol 4 (S2) ◽  
pp. 860-861 ◽  
Author(s):  
A. Ramirez de Arellano López ◽  
W.-A. Chiou ◽  
K. T. Faber

The results of TEM analyses of materials are critically dependent on the quality of the sample prepared. Although numerous techniques have been developed in the last two decades, differential thinning of inhomogeneous materials remains a serious problem. Recently, focused ion beam (FIB) technique has been introduced for cross-sectional sample preparation for TEM and SEM.A novel system for depositing a fine-grain (∼ 200 nm) ceramic coating on a metal surface via a patent pending Small-Particle Plasma Spray (SPPS) technique has been developed at the Basic Industry Research Laboratory of Northwestern University. To understand the properties of the coated surface, the ceramic/metal interface and the microstructure of the ceramic coating must be investigated. This paper presents a comparison of the microstructure of an A12O3 coating on a mild steel substrate prepared using conventional and FEB techniques.


2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.


1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


2000 ◽  
Vol 6 (3) ◽  
pp. 218-223
Author(s):  
Toshie Yaguchi ◽  
Takeo Kamino ◽  
Mitsumasa Sasaki ◽  
Gerard Barbezat ◽  
Ryoichi Urao

Abstract A focused ion beam (FIB) technique was applied to cross-sectional specimen preparation to observe an interface between a plasma sprayed coating and an aluminum (Al) substrate by transmission electron microscopy (TEM). The surface of the sprayed coating film has a roughness of several tens of microns. Sputter rates for the coating film and the substrate are greatly different. The rough surface and the difference in sputter rate cause problems in making TEM specimens with smooth side walls. The top surface of the coating film was planerized by the FIB before fabricating the TEM specimen. The interfaces were investigated by TEM and energy-dispersive X-ray (EDX) analysis. The TEM observation revealed that there is a 10 nm thick amorphous layer at the interface between the coating film and substrate. The coating film consists of two kinds of sublayers with bright and dark contrast. The bright contrast sublayers were amorphous layers with thickness of 2~10 nm. The Al/Fe X-ray intensity ratio was larger in bright contrast sublayers than that in dark contrast sublayers.


1992 ◽  
Vol 279 ◽  
Author(s):  
Wei Chen ◽  
P. Chen ◽  
A. Madhukar ◽  
R. Viswanathan ◽  
J. So

ABSTRACTWe report the realization of free standing 3D structures as tall as ∼ 7μm with nano-scale thickness in Si using the technique of Ga focused ion beam implantation and sputtering followed by wet chemical etching. Some of the previously investigated subjects such as anisotropie etching behavior of crystalline Si and etch stop effect of Ga+implanted Si etched in certain anisotropie chemical etchants have been further explored with the emphasis on exploiting them in realizing free standing structures. The design and fabrication considerations in achieving such free standing structures are discussed and some typical structures fabricated by this technique are shown.


1990 ◽  
Vol 199 ◽  
Author(s):  
Kyung-ho Park

ABSTRACTA procedure for preparing cross-sectional TEM specimens by focused ion beam etching (FIB) of specific regions on an integrated circuit chip is outlined. The investigation of the morphology, structure and local chemistry of precisely selected regions of semiconductor devices becomes increasingly important since the lateral dimensions and layer thickness of device structures are continually being reduced. The standard technique of preparing specimens for TEM, whether planar or cross-sectional, cannot select particular small regions. Some techniques and a number of tools and fixtures have been proposed which allow us to prepare TEM specimen of prespecified locations in complex devices. Most of these techniques, however, are still very difficult, tedious process and time consuming.A new technique has been proposed recently involving the use of FIB. The technique ensures that the preselected area of submicron scale will be located in the electron transparent section used for TEM imaging, in preparation turn-around time of about two hours. The TEM imaging of specific contacts via hole in a VLSI chip is illustrated.


2004 ◽  
Vol 2004.5 (0) ◽  
pp. 111-112
Author(s):  
Noritaka KAWASEGI ◽  
Noboru MORITA ◽  
Noboru TAKANO ◽  
Kiwamu ASHIDA ◽  
Jun TANIGUCHI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document