Method for Cross-sectional Thin Specimen Preparation from a Specific Site Using a Combination of a Focused Ion Beam System and Intermediate Voltage Electron Microscope and Its Application to the Characterization of a Precipitate in a Steel

2001 ◽  
Vol 7 (3) ◽  
pp. 287-291
Author(s):  
Toshie Yaguchi ◽  
Hiroaki Matsumoto ◽  
Takeo Kamino ◽  
Tohru Ishitani ◽  
Ryoichi Urao

AbstractIn this study, we discuss a method for cross-sectional thin specimen preparation from a specific site using a combination of a focused ion beam (FIB) system and an intermediate voltage transmission electron microscope (TEM). A FIB-TEM compatible specimen holder was newly developed for the method. The thinning of the specimen using the FIB system and the observation of inside structure of the ion milled area in a TEM to localize a specific site were alternately carried out. The TEM fitted with both scanning transmitted electron detector and secondary electron detector enabled us to localize the specific site in a halfway milled specimen with the positional accuracy of better than 0.1 µm. The method was applied to the characterization of a precipitate in a steel. A submicron large precipitate was thinned exactly at its center for the characterization by a high-resolution electron microscopy and an elemental mapping.

1999 ◽  
Vol 5 (S2) ◽  
pp. 914-915
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
H. Matsumoto ◽  
H. Kobayashi ◽  
H. Koike

A method for site specific characterization of the materials using a dedicated focused ion beam(FIB) system and an analytical transmission electron microscope (TEM) was developed. Needless to say, in TEM specimen preparation using FIB system, stability of a specimen is quite important. The specimen stage employed in the developed FIB system is the one designed for high resolution TEM, and the specimen drift rate of the stage is less than lnm/min. In addition, FIB-TEM compatible specimen holder which allows milling of a specimen with the FIB system and observation of the specimen with the TEM without re-loading was developed. To obtain thin specimen from the area to be characterized correctly, confirmation of the area before final milling is needed. However, observation of cross sectional view in a FIB system is recommended because it causes damage by Ga ion irradiation. To solve this problem, we used a STEM unit as a viewer of FIB milled specimen.


Author(s):  
E. Hendarto ◽  
S.L. Toh ◽  
J. Sudijono ◽  
P.K. Tan ◽  
H. Tan ◽  
...  

Abstract The scanning electron microscope (SEM) based nanoprobing technique has established itself as an indispensable failure analysis (FA) technique as technology nodes continue to shrink according to Moore's Law. Although it has its share of disadvantages, SEM-based nanoprobing is often preferred because of its advantages over other FA techniques such as focused ion beam in fault isolation. This paper presents the effectiveness of the nanoprobing technique in isolating nanoscale defects in three different cases in sub-100 nm devices: soft-fail defect caused by asymmetrical nickel silicide (NiSi) formation, hard-fail defect caused by abnormal NiSi formation leading to contact-poly short, and isolation of resistive contact in a large electrical test structure. Results suggest that the SEM based nanoprobing technique is particularly useful in identifying causes of soft-fails and plays a very important role in investigating the cause of hard-fails and improving device yield.


Author(s):  
H. J. Bender ◽  
R. A. Donaton

Abstract The characteristics of an organic low-k dielectric during investigation by focused ion beam (FIB) are discussed for the different FIB application modes: cross-section imaging, specimen preparation for transmission electron microscopy, and via milling for device modification. It is shown that the material is more stable under the ion beam than under the electron beam in the scanning electron microscope (SEM) or in the transmission electron microscope (TEM). The milling of the material by H2O vapor assistance is strongly enhanced. Also by applying XeF2 etching an enhanced milling rate can be obtained so that both the polymer layer and the intermediate oxides can be etched in a single step.


1998 ◽  
Vol 4 (S2) ◽  
pp. 860-861 ◽  
Author(s):  
A. Ramirez de Arellano López ◽  
W.-A. Chiou ◽  
K. T. Faber

The results of TEM analyses of materials are critically dependent on the quality of the sample prepared. Although numerous techniques have been developed in the last two decades, differential thinning of inhomogeneous materials remains a serious problem. Recently, focused ion beam (FIB) technique has been introduced for cross-sectional sample preparation for TEM and SEM.A novel system for depositing a fine-grain (∼ 200 nm) ceramic coating on a metal surface via a patent pending Small-Particle Plasma Spray (SPPS) technique has been developed at the Basic Industry Research Laboratory of Northwestern University. To understand the properties of the coated surface, the ceramic/metal interface and the microstructure of the ceramic coating must be investigated. This paper presents a comparison of the microstructure of an A12O3 coating on a mild steel substrate prepared using conventional and FEB techniques.


1999 ◽  
Vol 5 (S2) ◽  
pp. 740-741 ◽  
Author(s):  
C.A. Urbanik ◽  
B.I. Prenitzer ◽  
L.A. Gianhuzzi ◽  
S.R. Brown ◽  
T.L. Shofner ◽  
...  

Focused ion beam (FIB) instruments are useful for high spatial resolution milling, deposition, and imaging capabilities. As a result, FIB specimen preparation techniques have been widely accepted within the semiconductor community as a means to rapidly prepare high quality, site-specific specimens for transmission electron microscopy (TEM) [1]. In spite of the excellent results that have been observed for both high resolution (HREM) and standard TEM specimen preparation applications, a degree of structural modification is inherent to FIB milled surfaces [2,3]. The magnitude of the damage region that results from Ga+ ion bombardment is dependent on the operating parameters of the FIB (e.g., beam current, beam voltage, milling time, and the use of reactive gas assisted etching).Lattice defects occur as a consequence of FIB milling because the incident ions transfer energy to the atoms of the target material. Momentum transferred from the incident ions to the target atoms can result in the creation of point defects (e.g., vacancies, self interstitials, and interstitial and substitutional ion implantation), the generation of phonons, and plasmon excitation in the case of metal targets.


1998 ◽  
Vol 4 (S2) ◽  
pp. 856-857
Author(s):  
David M. Longo ◽  
James M. Howe ◽  
William C. Johnson

The focused ion beam (FIB) has become an indispensable tool for a variety of applications in materials science, including that of specimen preparation for the transmission electron microscope (TEM). Several FIB specimen preparation techniques have been developed, but some problems result when FIB specimens are analyzed in the TEM. One of these is X-ray fluorescence from bulk material surrounding the thin membrane in FIB-prepared samples. This paper reports on a new FIB specimen preparation method which was devised for the reduction of X-ray fluorescence during energy dispersive X-ray spectroscopy (EDS) in the TEM.Figure 1 shows three membrane geometries that were investigated in this study on a single-crystal Si substrate with a RF sputter-deposited 50 nm Ni film. Membrane 1 is the most commonly reported geometry in the literature, with an approximately 20 urn wide trench and a membrane having a single wedge with a 1.5° incline.


2000 ◽  
Vol 6 (3) ◽  
pp. 218-223
Author(s):  
Toshie Yaguchi ◽  
Takeo Kamino ◽  
Mitsumasa Sasaki ◽  
Gerard Barbezat ◽  
Ryoichi Urao

Abstract A focused ion beam (FIB) technique was applied to cross-sectional specimen preparation to observe an interface between a plasma sprayed coating and an aluminum (Al) substrate by transmission electron microscopy (TEM). The surface of the sprayed coating film has a roughness of several tens of microns. Sputter rates for the coating film and the substrate are greatly different. The rough surface and the difference in sputter rate cause problems in making TEM specimens with smooth side walls. The top surface of the coating film was planerized by the FIB before fabricating the TEM specimen. The interfaces were investigated by TEM and energy-dispersive X-ray (EDX) analysis. The TEM observation revealed that there is a 10 nm thick amorphous layer at the interface between the coating film and substrate. The coating film consists of two kinds of sublayers with bright and dark contrast. The bright contrast sublayers were amorphous layers with thickness of 2~10 nm. The Al/Fe X-ray intensity ratio was larger in bright contrast sublayers than that in dark contrast sublayers.


Sign in / Sign up

Export Citation Format

Share Document