scholarly journals In Situ Transmission Electron Microscopy of Electrochemical Nucleation and Growth of Copper on Gold

2005 ◽  
Vol 11 (S02) ◽  
Author(s):  
A Radisic ◽  
P C Searson ◽  
F M Ross
1993 ◽  
Vol 311 ◽  
Author(s):  
Robert Sinclair ◽  
Toyohiko J. Konno

ABSTRACTWe have studied the reactions at metal-metalloid interfaces using high resolution transmission electron microscopy, including in situ observation, and differential scanning calorimetry. There is contrasting behavior depending on the affinity for interaction or segregation. For reactive systems, compound formation ultimately results, but this can be preceded by solidstate amorphization. For non-reactive systems, crystallization of the metalloid is often achieved with nucleation and growth mediated by the metal phase.


2019 ◽  
Vol 12 (10) ◽  
pp. 3144-3155 ◽  
Author(s):  
Zheng-Long Xu ◽  
Sung Joo Kim ◽  
Donghee Chang ◽  
Kyu-Young Park ◽  
Kyun Seong Dae ◽  
...  

The nucleation and growth of lithium sulfides are directly observed by liquid in situ transmission electron microscopy.


2005 ◽  
Vol 20 (7) ◽  
pp. 1684-1694 ◽  
Author(s):  
Guangwen Zhou ◽  
Judith C. Yang

The initial oxidation stages of Cu(100), (110), and (111) surfaces have been investigated by using in situ ultra-high-vacuum transmission electron microscopy (TEM) techniques to visualize the nucleation and growth of oxide islands. The kinetic data on the nucleation and growth of oxide islands shows a highly enhanced initial oxidation rate on the Cu(110) surface as compared with Cu(100), and it is found that the dominant mechanism for the nucleation and growth is oxygen surface diffusion in the oxidation of Cu(100) and (110). The oxidation of Cu(111) shows a dramatically different behavior from that of the other two orientations, and the in situ TEM observation reveals that the initial stages of Cu(111) oxidation are dominated by the nucleation of oxide islands at temperatures lower than 550 °C, and are dominated by two-dimensional oxide growth at temperatures higher than 550 °C. This dependence of the oxidation behavior on the crystal orientation and temperature is attributed to the structures of the oxygen-chemisorbed layer, oxygen surface diffusion, surface energy, and the interfacial strain energy.


1989 ◽  
Vol 146 ◽  
Author(s):  
Ivo J.M.M. Raaijmakers ◽  
Leo J. van Ijzendoorn ◽  
Anton M.L. Theunissen ◽  
Ki-Bum Kim

ABSTRACTIt is known that thermal annealing of Ti and amorphous (α) Si first results in an amorphous silicide, after which the crystalline disilicide grows under diffusion control. The situation with respect to the reaction of Ti with crystalline (x) Si is much less clear. We have investigated the reaction of Ti with xSi with (high resolution) cross-section transmission electron microscopy and in-situ Rutherford backscattering spectroscopy. It is shown that an amorphous silicide can also be formed on crystalline Si. The presence of this amorphous silicide as a precursor to the C49TiSi2 phase is suggested to be an important issue in the nucleation and growth of the disilicide.


2014 ◽  
Vol 20 (2) ◽  
pp. 407-415 ◽  
Author(s):  
Dipanjan Bhattacharya ◽  
Michel Bosman ◽  
Venkata R.S.S. Mokkapati ◽  
Fong Yew Leong ◽  
Utkur Mirsaidov

AbstractThe origin of the condensation of water begins at the nanoscale, a length-scale that is challenging to probe for liquids. In this work we directly image heterogeneous nucleation of water nanodroplets by in situ transmission electron microscopy. Using gold nanoparticles bound to a flat surface as heterogeneous nucleation sites, we observe nucleation and growth of water nanodroplets. The growth of nanodroplet radii follows the power law: R(t)~(t−t0)β, where β~0.2−0.3.


2005 ◽  
Vol 20 (7) ◽  
pp. 1910-1917 ◽  
Author(s):  
L. Sun ◽  
J.C. Yang

The nucleation and growth of Cu2O islands due to Cu(100) oxidation at temperatures from 200 to 350 °C have been observed by in situ ultra-high-vacuum transmission electron microscopy. For this temperature range, epitaxial Cu2O islands form a triangular shape with rounded edges when Cu(100) is exposed to dry oxygen at 5 × 10−4 Torr in situ. Our initial analysis on the nucleation and growth of these three-dimensional Cu2O islands agrees well with the heteroepitaxial model of surface diffusion of oxygen.


Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2618 ◽  
Author(s):  
Caitlin A. Taylor ◽  
Samuel Briggs ◽  
Graeme Greaves ◽  
Anthony Monterrosa ◽  
Emily Aradi ◽  
...  

Palladium can readily dissociate molecular hydrogen at its surface, and rapidly accept it onto the octahedral sites of its face-centered cubic crystal structure. This can include radioactive tritium. As tritium β-decays with a half-life of 12.3 years, He-3 is generated in the metal lattice, causing significant degradation of the material. Helium bubble evolution at high concentrations can result in blister formation or exfoliation and must therefore be well understood to predict the longevity of materials that absorb tritium. A hydrogen over-pressure must be applied to palladium hydride to prevent hydrogen from desorbing from the metal, making it difficult to study tritium in palladium by methods that involve vacuum, such as electron microscopy. Recent improvements in in-situ ion implantation Transmission Electron Microscopy (TEM) allow for the direct observation of He bubble nucleation and growth in materials. In this work, we present results from preliminary experiments using the new ion implantation Environmental TEM (ETEM) at the University of Huddersfield to observe He bubble nucleation and growth, in-situ, in palladium at cryogenic temperatures in a hydrogen environment. After the initial nucleation phase, bubble diameter remained constant throughout the implantation, but bubble density increased with implantation time. β-phase palladium hydride was not observed to form during the experiments, likely indicating that the cryogenic implantation temperature played a dominating role in the bubble nucleation and growth behavior.


Sign in / Sign up

Export Citation Format

Share Document