scholarly journals Nanostructure Analysis of Sol-gel PZT Thin Films Derived from Different Chemical Routes

2009 ◽  
Vol 15 (S3) ◽  
pp. 53-54
Author(s):  
Aiying Wu ◽  
P. M. Vilarinho

AbstractLead zirconate - lead titanate (PZT) materials are commercially important piezoelectric and ferroelectrics in a wide range of applications, such as data storage (dynamic access and ferroelectric random access memories) and sensing and actuating devices. PZT with the morphotropic phase boundary composition offers the highest piezoelectric response and at the present there are no fullydeveloped alternative materials to PZT. The importance of PZT associated with the continuous requirements of device miniaturization, imposes the development of high quality PZT thin films with optimized properties. Concomitantly due to the dependence of the final properties of thin films on the details of the microstructure a thoroughly analysis at the local scale of their microstructure is necessary. Sol-gel method, is one of the Chemical Solution Deposition techniques used to prepare oxide thin films, such as PZT. Starting from a solution, a solid network is progressively formed via inorganic polymerisation reactions. Most metal alkoxides used for sol-gel synthesis are highly reactive towards hydrolysis and condensation. Therefore their chemical reactivity has to be tailored via the chemical modification (or complexation) of metal alkoxides to avoid uncontrolled reactions and precipitation. For PZT sol gel thin film preparation, two chemical routes are frequently used depending on the nature of the molecular precursor, namely methotoxyethanol (MOE) route and diol-route.

2012 ◽  
Vol 2012 ◽  
pp. 1-9
Author(s):  
B. S. Li

Lead zirconate titanate (PZT) thin films with the morphotropic phase boundary composition (Zr/Ti = 52/48) have been prepared using a modified diol-based sol-gel route by introducing 1–5 mol% barium titanate (BT) nanoseeds into the precursor solution on platinized silicon substrates (Pt/Ti/SiO2/Si). Macroscopic electric properties of PZT film with nanoparticle showed a significant improvement of ferroelectric properties. This work aims at the systematic study of the local switching polarization behavior during fatigue in PZT films with and without nanoparticles by using very recent developed scanning piezoelectric microscopy (SPM). We show that the local fatigue performance, which is characterized by variations of local piezoloop with electric cycles, is significantly improved by adding some nanoseeds. It has been verified by scanning electron microscope (SEM) that the film grain morphology changes from columnar to granular structure with the addition of the nanoseeds. On the other hand, the existence of PtxPb transition phase, which existed in interface at early crystallization stage of pure PZT thin film, deteriorates the property of the interface. These microstructures and the interfaces of these films significantly affect the electrons injection occurred on the interfaces. The domain wall pinning induced by injected electrons and the succeeding penetration into the films is discussed to explain the fatigue performance.


2007 ◽  
Vol 14 (02) ◽  
pp. 229-234
Author(s):  
SARAWUT THOUNTOM ◽  
MANOCH NAKSATA ◽  
KENNETH MACKENZIE ◽  
TAWEE TUNKASIRI

Lead zirconate titanate (PZT) films with compositions near the morphotropic phase boundary were fabricated on Pt (111)/ Ti / SiO 2/ Si (100) using the triol sol–gel method. The effect of the pre-heating temperature on the phase transformations, microstructures, electrical properties, and ferroelectric properties of the PZT thin films was investigated. Randomly oriented PZT thin films pre-heated at 400°C for 10 min and annealed at 600°C for 30 min showed well-defined ferroelectric hysteresis loops with a remnant polarization of 26.57 μC/cm2 and a coercive field of 115.42 kV/cm. The dielectric constant and dielectric loss of the PZT films were 621 and 0.0395, respectively. The microstructures of the thin films are dense, crack-free, and homogeneous with fine grains about 15–20 nm in size.


1999 ◽  
Vol 596 ◽  
Author(s):  
Chang Jung Kim ◽  
Ilsub Chung

AbstractLanthanum doped lead zirconate titanate (PZT) thin films have been prepared on Pt/IrO2/Ir/SiO2/Si substrates to improve the ferroelectric and retention properties. The microstructure and electrical properties of the PZT capacitors were evaluated as a function of La content. The crystalline orientation was appreciably influenced by the addition of La in PZT thin films. The microstructures of films containing 0 and 0.5 mol% La were single phase perovskite, but for La = 1 mol%, a second phase was detected by SEM observation. The 0.5 mol% La doped PZT thin film capacitor showed the best ferroelectric and retention properties for ferroelectric random access memory compared to non-doped PZT.


1998 ◽  
Vol 541 ◽  
Author(s):  
Chang Jung Kim ◽  
Tae-Young Kim ◽  
Ilsub Chung ◽  
In Kyung Yoo

AbstractThe PZT thin films were fabricated to investigate the effect of sol-gel processing parameters on the physical and the electrical properties. The films were made with different amount of excess Pb precursors and drying temperatures, and then annealed in various ambients. The physical properties of the films such as crystallinity and microstructure were evaluated using x-ray diffraction, scanning electron microscopy and atomic force microscopy. The ferroelectric properties and current density characteristics of the films were investigated using a standarized feiroelectric test system and pA meter, respectively. It is found that the drying temperature was playing a key role in the formation of the secondary phase on the PZT thin films. In addition, it turned out that the use of nitrogen as an annealing ambient promoted overall ferroelectric properties, when compared to oxygen ambients.


2001 ◽  
Vol 37 (1-4) ◽  
pp. 67-74 ◽  
Author(s):  
George McLane ◽  
Ronald Polcawich ◽  
Jeffrey Pulskamp ◽  
Brett Piekarski ◽  
Madan Dubey ◽  
...  

1991 ◽  
Vol 243 ◽  
Author(s):  
Keith G. Brooks ◽  
Jiayu Chen ◽  
K. R. Udayakumar ◽  
L. Eric Cross

AbstractLead zirconate titanate thin films containing 0-4 wt.% of 2CdO·B2O3 glass phase additive have been fabricated by sol-gel processing. Smooth dense perovskite films of approximately 3500Å thickness were formed on Si wafers by a multiple layer spin coating process followed by rapid thermal annealing. Remanent polarizations of up to 23μC/cm2 were measured. Hysteresis properties were found to be very sensitive to annealing time at 700°C, with remanence being maximized at 100-200 seconds.


2007 ◽  
Vol 280-283 ◽  
pp. 239-242 ◽  
Author(s):  
Wen Gong ◽  
Xiang Cheng Chu ◽  
Jing Feng Li ◽  
Zhi Lun Gui ◽  
Long Tu Li

Lead zirconate titanate (PZT) thin films with a composition near the morphotropic phase boundary were deposited on silicon wafers by using a modified sol-gel method. Introducing a seeding layer between the interface of PZT film and platinum electrode controlled the texture of PZT films. The lead oxide seeding layer results in highly (001)-textured PZT film, while the titanium dioxide seeding layer results in (111)-textured one. SEM and XRD were used to characterize the PZT thin films. The ferroelectric and piezoelectric properties of the PZT films were evaluated and discussed in association with different preferential orientations.


Sign in / Sign up

Export Citation Format

Share Document