scholarly journals Using Microscopy to Assess Chorion Structural Integrity and Parasitoid Oviposition Sites on Stink Bug (Hemiptera: Pentatomidae) Eggs

2010 ◽  
Vol 17 (1) ◽  
pp. 114-117 ◽  
Author(s):  
A.L. Koppel ◽  
D.A. Herbert ◽  
E.W. Westbrook

AbstractPrevious efficacy studies found that many insecticides used by growers could be having an adverse effect on egg parasitoids (Telenomus podisi) developing in the eggs of the brown stink bug (Euschistus servus), while unhatched stink bugs experienced lower levels of mortality. One plausible explanation for this was that insecticides might enter parasitized eggs more readily via oviposition wounds. Parasitized E. servus eggs, as well as nonparasitized stink bug (Acrosternum hilare, E. servus, Murgantia histrionica, and Podisus maculiventris) eggs, were examined using electron microscopy. Egg response to perforation by a tungsten probe served as a control. Microscopy images depicted the chorion surface as characterized by a matrix of ridges and micropylar processes in a ring around the margin of the operculum. Observations of oviposition sites showed a “scab” formed where the ovipositor penetrated the chorion, and at sites penetrated by the probe. These formations appeared to be the result of fluids from inside the egg leaking out, drying, and hardening after oviposition or probe perforation, suggesting that the response was not due to substances secreted by the parasitoid. Further, no open wounds or holes were seen to increase the possibility of insecticides entering parasitized eggs.

2006 ◽  
Vol 41 (1) ◽  
pp. 9-21 ◽  
Author(s):  
Henry W. Hogmire ◽  
Tracy C. Leskey

Capture of stink bugs (Heteroptera: Pentatomidae) in apple orchards with yellow pyramid traps baited with Euschistus spp. (Heteroptera: Pentatomidae) aggregation pheromone, methyl (2E,4Z)-decadienoate, was 4 fold greater when traps were topped with a 3.8-L jar with a 1.6 cm diameter opening and trimmed wire edging than with a 1.9-L jar with a 5 cm diameter opening with no wire edging. Stink bug capture in the 3.8-L jar top was unaffected by the presence or size of an insecticide ear tag, indicating that this improved design led to increased captures by reducing escape. Sixty-four percent fewer stink bugs escaped from 3.8-L jar tops with the improved capture mechanism than from the 1.9-L jar tops. Green stink bug, Acrosternum hilare (Say), was more susceptible to the presence of the insecticide ear tag than the brown stink bug, Euschistus servus (Say), with dusky stink bug, E. tristigmus (Say), exhibiting high mortality in traps with and without ear tags. Among baited and unbaited pyramid traps with different visual stimuli, fewer captures were recorded in black pyramid traps than in clear, yellow, green or white pyramid traps. Similar numbers of brown stink bugs were captured in yellow pyramid traps deployed on the ground between trees or on horizontal branches within trees in the orchard border row. Captures of dusky and green stink bugs were greater in the tree pyramid, especially from August to mid-October. Relationships between stink bug capture and injury will need to be determined before this trap can be incorporated as a decision-making tool in pest management programs.


2009 ◽  
Vol 44 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Katherine L. Kamminga ◽  
D. Ames Herbert ◽  
Thomas P. Kuhar ◽  
Sean Malone ◽  
Amanda Koppel

Laboratory bioassays and field trials were conducted to evaluate the efficacy of selected organophosphate, pyrethroid, and neonicotinoid insecticides, as well as a chitin inhibitor, novaluron, against 2 common stink bug pests in Virginia, the green stink bug, Acrosternum hilare (Say), and the brown stink bug, Euschistus servus (Say). Green bean dip bioassays revealed differences in insecticide susceptibility between the 2 species. Acrosternum hilare adults were highly susceptible to all pyrethroids tested, the organophosphates except acephate, and the neonicotinoids except acetamiprid. Acrosternum hilare nymphs were also susceptible to all pyrethroids tested. In general, the neonicotinoids, dinotefuran and clothianidin, were toxic to A. hilare, whereas thiamethoxam and acetamiprid were toxic to E. servus. In field trials in soybean, the neonicotinoids, dinotefuran, imidacloprid, and thiamethoxam were efficacious at controlling stink bugs and, in general, performed comparably to the organophosphates and pyrethroids. These results indicate that neonicotinoid insecticides offer an alternative to growers for managing stink bugs that may fit with integrated pest management programs where conservation of natural enemies is a consideration.


2000 ◽  
Vol 35 (4) ◽  
pp. 402-410 ◽  
Author(s):  
C. S. Bundy ◽  
R. M. McPherson ◽  
G. A. Herzog

Small- and medium-sized bolls were exposed to stink bugs, primarily Nezara viridula (L.), Acrosternum hilare (Say), and Euschistus servus (Say), for a 48-h feeding period. Bolls were then examined for external and internal evidence of feeding 2, 4, 6, 8, and 10 d later. No relationship was documented between numbers of external feeding marks and internal warts that form when the interior of the boll is pierced. In fact, approximately 20% of damaged bolls with internal warts lacked external marks. Therefore, external marks cannot be used to accurately estimate the occurrence or amount of internal boll damage by stink bugs. Neither size nor number of external marks or warts increased significantly among the five post-feeding sampling dates. All visual signs of damage were present by the second day. There were significantly more damaged bolls with the combination of external marks, stylet sheaths, and warts (approximately 70%) than any other combination of feeding signs. There was a significant increase in lint and seed damage through time. Finally, a strong relationship existed between the presence of a feeding stylet sheath and wart number. A regression equation was generated to predict the presence of internal wart damage (warts) based on the number of stylet sheaths observed. A sampling program based on the incidence of stylet sheaths could potentially be used in a cotton pest management program to effectively assess stink bug injury to cotton bolls without destroying the developing bolls.


2020 ◽  
Vol 55 (4) ◽  
pp. 437-447
Author(s):  
Ted E. Cottrell ◽  
Rammohan R. Balusu ◽  
Edgar Vinson ◽  
Bryan Wilkins ◽  
Henry Y. Fadamiro ◽  
...  

Abstract Stink bugs (Hemiptera: Pentatomidae) are commonly monitored using pyramid traps baited with a pheromone. Initially, the pyramid traps were painted yellow and predominantly used to monitor native stink bug species. However, research studies involving the exotic Halyomorpha halys Stål (Hemiptera: Pentatomidae) now use pyramid traps that are black, not yellow. As H. halys moves across the southeastern United States, the use of a single trap, yellow or black, for monitoring and conducting research studies would be beneficial. Our objective was to compare black and yellow pyramid traps baited with a lure to determine if one was superior for trapping herbivorous stink bugs. This study was conducted at four locations, three in Alabama and one in Georgia, over 2 yr. Additionally, residual efficacy of the lure was measured via trap capture over 1-mo intervals. Our results showed that only when native stink bug species were combined, and only in 1 yr, were captures significantly affected by trap color. Capture of the exotic H. halys and the most abundant native species, Euschistus servus (Say), was not significantly affected by trap color. Trap capture was significantly affected by how long a lure was in a trap. The data from this study suggests that when traps are used in conjunction with a pheromone to monitor multiple species of adult stink bugs, especially native species, the yellow pyramid trap is favored.


2008 ◽  
Vol 43 (3) ◽  
pp. 257-267 ◽  
Author(s):  
S. Y. Young ◽  
J. K. Greene ◽  
G. M. Lorenz

A series of field-cage experiments were conducted in 2002 and 2003 in southeast Arkansas to measure the impact of feeding by green stink bug, Acrosternum hilare (Say), on soybean yield and seed damage. Stink bugs were collected from local soybean fields and released in 1.8 × 1.8 × 1.8 m walk-in screen cages at densities of 0, 3, 9, and 18 bugs per row-m on maturity group (MG) IV and MG V soybean at different stages of crop phenological development. Damaged seed at harvest was significantly related to caged density of A. hilare in most of the cage experiments. Yield loss was associated with density of caged bugs in 7 of 11 different experiments and ranged from 13.4–60.5 kg/ha (0.2–0.9 bu/a) lost per bug per row-m. MG IV and MG V soybean were similarly impacted by density of A. hilare when exposed at the same stage of crop development. Feeding by small and large nymphs at early (R2–R3) and mid (R5–R6) reproductive stages resulted in significant yield loss. Feeding damage was apparent on late reproductive stage soybean (R7–R8), but no measurable impact on yield was observed. This suggested that thresholds could be raised or control efforts could be terminated for stink bugs infesting R7–R8 stage soybean. Damage due to feeding by stink bugs is related to various factors, but crop phenology, density of bugs, and length of infestation time are consistent and predictable influences that are interrelated, and all should be considered in determining the need to control field populations.


2009 ◽  
Vol 44 (4) ◽  
pp. 314-322 ◽  
Author(s):  
Tracy C. Leskey ◽  
Brent D. Short ◽  
Starker E. Wright ◽  
Mark W. Brown

Adult brown stink bugs, Euschistus servus (Say), were caged individually on limbs with apple fruit of 6 cultivars in research orchards in West Virginia. Studies were performed to describe specific characteristics of damage that could be used for field and/or laboratory diagnosis of stink bug injury to apple fruit at harvest. These characteristics were separated into surface and subsurface features. On the apple surface, 3 prevailing types of stink bug injury were observed in the field: (1) a discolored dot, i.e., stink bug feeding puncture; (2) a discolored dot with a depression in the fruit; and (3) a discolored dot with a discolored depression in the fruit. Subsurface characters were related to the extent of damage observed on the fruit skin. Common subsurface damage ranged from a stylet sheath to corky tissue of variable color, shape, and size that sometimes was not contiguous with the skin. Laboratory evaluations under a dissecting microscope revealed that the size of the stink bug feeding puncture was ~0.17 mm diam. This character was the only consistent, definitive symptom of stink bug injury present among all observed damage. Due to variability in other surface and subsurface characters, and potential problems with visual apparency of injury in the field, evaluations of suspected stink bug damage should be performed with 40X magnification in the laboratory to confirm the presence of stink bug feeding punctures.


2008 ◽  
Vol 43 (2) ◽  
pp. 191-207 ◽  
Author(s):  
Glynn Tillman

The objective of this on-farm study was to determine if peanuts harbor populations of stink bugs (Heteroptera: Pentatomidae) and their natural enemies in Georgia. Eight species of phytophagous stink bugs were found in peanuts over the 5-yr study. The predominant stink bug species were Nezara viridula (L.), Euschistus servus (Say), Euschistus quadrator (Rolston), and Oebalus pugnax pugnax (F.). The remaining 4 species, Acrosternum hilare (Say), Euschistus tristigmus (Say), Euschistus ictericus (L.), and Thyanta custator accerra McAtee, were found in relatively low numbers. All developmental stages of N. viridula, E. servus, E. quadrator, A. hilare, and O. p. pugnax were collected at various times in the study indicating that these 5 species of stink bugs were developing on this crop. Seasonal abundance of N. viridula and E. servus nymphs and adults provided further support that these 2 species of stink bugs developed on peanuts. At least 1 generation of N. viridula and E. servus occurred in peanuts each year, and generally some of the adults that developed on peanuts oviposited on peanuts producing another generation of nymphs in this crop. Because only adults of T. c. accerra, E. tristigmus, and E. ictericus were found in peanuts, these 3 stink bug species probably were not developing on this crop. Adult stink bugs were parasitized by the tachinid parasitoids Trichopoda pennipes (F.) and Cylindromyia spp. Stink bug eggs were parasitized by the scelionids, Trissolcus basalis (Wollaston), Trissolcus thyantae Ashmead, Trissolcus brochymenae (Ashmead), Telenomus podisi Ashmead, and Gryon obesum Masner, and an unknown encyrtid species. Geocoris punctipes (Say), Geocoris uliginosus (Say), Orius insidiosus (Say), Podisus maculiventris (Say), and Oxyopes salticus Hentz preyed on stink bugs in peanuts. Peanuts harbor populations of stink bugs and their natural enemies, and thus the role peanuts play in landscape ecology of stink bugs needs to be ascertained to better understand how to manage stink bug populations in landscapes in which peanuts are associated with other crops.


2013 ◽  
Vol 104 (1) ◽  
pp. 56-64 ◽  
Author(s):  
P.G. Tillman ◽  
T.E. Cottrell ◽  
R.F. Mizell ◽  
E. Kramer

AbstractStink bugs (Heteroptera: Pentatomidae), including Nezara viridula (L.), Euschistus servus (Say), and Chinavia hilaris (Say), are economic pests in farmscapes where they move within and between closely associated crop and non-crop habitats. Thus, field edges in these farmscapes include not only crop-to-crop interfaces but also those edges adjoining non-crop habitats. We examined the influence of field edges on colonization of stink bugs in southeastern USA farmscapes composed of typical combinations of corn, peanut, and cotton. For E. servus and N. viridula, egg-to-adult development and presence of both sexes on all crops indicated that the crops served as reproductive plants. Adult C. hilaris were rarely found on corn and on crops associated with it, and they were present mainly in cotton in peanut–cotton farmscapes. Mature crop height was significantly higher for corn than for cotton and significantly higher for cotton over peanut, and an edge effect in dispersal of stink bugs into a crop was detected up to 4.6, 8.2, and 14.6 m from the crop-to-crop interface in corn, cotton, and peanut, respectively. These results suggest that stink bug dispersal into a crop decreases as crop height increases. The first stink bug-infested crop at the crop-to-crop interface was the most significant contributor of colonizing stink bugs to an adjacent crop. An edge effect in dispersal of stink bug adults was detected in corn next to non-woodlands and woodlands and in cotton adjacent to woodlands. Edge effects were never detected in side edges of peanut. Overall, our results indicate that both plant height and host plant suitability can influence edge-mediated dispersal of stink bugs at field edges.


Sign in / Sign up

Export Citation Format

Share Document