Assessment of Metal Pollution Sources by SEM/EDS Analysis of Solid Particles in Snow: A Case Study of Žerjav, Slovenia

2013 ◽  
Vol 19 (6) ◽  
pp. 1606-1619 ◽  
Author(s):  
Miloš Miler ◽  
Mateja Gosar

AbstractSolid particles in snow deposits, sampled in mining and Pb-processing area of Žerjav, Slovenia, have been investigated using scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS). Identified particles were classified as geogenic–anthropogenic, anthropogenic, and secondary weathering products. Geogenic–anthropogenic particles were represented by scarce Zn- and Pb-bearing ore minerals, originating from mine waste deposit. The most important anthropogenic metal-bearing particles in snow were Pb-, Sb- and Sn-bearing oxides and sulphides. The morphology of these particles showed that they formed at temperatures above their melting points. They were most abundant in snow sampled closest to the Pb-processing plant and least abundant in snow taken farthest from the plant, thus indicating that Pb processing was their predominant source between the last snowfall and the time of sampling. SEM/EDS analysis showed that Sb and Sn contents in these anthropogenic phases were higher and more variable than in natural Pb-bearing ore minerals. The most important secondary weathering products were Pb- and Zn-containing Fe-oxy-hydroxides whose elemental composition and morphology indicated that they mostly resulted from oxidation of metal-bearing sulphides emitted from the Pb-processing plant. This study demonstrated the importance of single particle analysis using SEM/EDS for differentiation between various sources of metals in the environment.

2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Ibrahim Shaik ◽  
S. K. Begum ◽  
P. V. Nagamani ◽  
Narayan Kayet

AbstractThe study demonstrates a methodology for mapping various hematite ore classes based on their reflectance and absorption spectra, using Hyperion satellite imagery. Substantial validation is carried out, using the spectral feature fitting technique, with the field spectra measured over the Bailadila hill range in Chhattisgarh State in India. The results of the study showed a good correlation between the concentration of iron oxide with the depth of the near-infrared absorption feature (R2 = 0.843) and the width of the near-infrared absorption feature (R2 = 0.812) through different empirical models, with a root-mean-square error (RMSE) between < 0.317 and < 0.409. The overall accuracy of the study is 88.2% with a Kappa coefficient value of 0.81. Geochemical analysis and X-ray fluorescence (XRF) of field ore samples are performed to ensure different classes of hematite ore minerals. Results showed a high content of Fe > 60 wt% in most of the hematite ore samples, except banded hematite quartzite (BHQ) (< 47 wt%).


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 638 ◽  
Author(s):  
Figueiredo ◽  
Vila ◽  
Fiúza ◽  
Góis ◽  
Futuro ◽  
...  

Demand growth for metallic minerals has been faced with the need for new techniques and improving technologies for all mining life-cycle operations. Nowadays, the exploitation of old tailings and mine-waste facilities could be a solution to this demand, with economic and environmental advantages. The Panasqueira Mine has been operating for more than a century, extracting tungsten and tin ore. Its first processing plant, “Rio”, was located near the Zêrere river, where mineral-processing residues were deposited on the top hillside on the margin of this river in the Cabeço do Pião tailings dam. The lack of maintenance and monitoring of this enormous structure in the last twenty years represents a high risk to the environment and the population of the surrounding region. A field-sample campaign allowed the collection of data, and resulted from laboratory tests to use regression optimization. Re-mining the tailings by hydrometallurgical methods was considered to satisfy the two conditions of metal demand and environmental risk. The metal content in Cabeço do Pião was shown be enough for environmental restoration. The re-mining solution was studied, taking into account the technical, economic, social, and environmental aspects.


2017 ◽  
Vol 58 (12) ◽  
pp. 1543-1552 ◽  
Author(s):  
M.I. Epov ◽  
N.V. Yurkevich ◽  
S.B. Bortnikova ◽  
Yu.G. Karin ◽  
O.P. Saeva

Author(s):  
H. M. Sagara ◽  
S. A. Schliebe ◽  
M. C. Kong

Particle analysis by scanning electron microscopy with energy-dispersive x- ray analysis is one of the current methods used in crime laboratories to aid law enforcement in identifying individuals who have recently fired or handled a firearm. During the discharge of a firearm, the high pressure caused by the detonation of the cartridge materials forces a portion of the generated gases through leaks in the firing mechanism of the weapon. These gases contain residues of smokeless powder, primer mixture, and contributions from the projectile itself. The condensation of these hot gases form discrete, micrometer-sized particles, which can be collected, along with dry skin cells, salts, and other hand debris, from the hands of a shooter by a simple adhesive lift technique. The examination of the carbon-coated adhesive lifts consist of time consuming systematic searches for high contrast particles of spherical morphology with the characteristic elemental composition of antimony, barium and lead. A detailed list of the elemental compositions which match the criteria for gunshot residue are discussed in the Aerospace report.


2000 ◽  
Vol 41 (4-5) ◽  
pp. 295-300 ◽  
Author(s):  
F. Murdoch ◽  
P.G. Smith

The deposition of manganese within a biofilm growing on the surface of high-density polyethlene (HDPE) and polyvinychloride (PVC) was studied over a period of four months. The manganese rich water used in the study was inoculated with a manganese oxidising Pseudomonas spp. The level of Mn2+ in the water was monitored and was found to decrease as the biofilm formation increased. This was confirmed by energy dispersive X-ray spectroscopy (EDS) analysis which showed the detection of manganese was dependent on the presence of a biofilm. After two months a 100% removal of Mn2+ was observed in all the flasks inoculated by the Pseudomonas spp. and manganese micro-nodules, the formation of which were reported in Murdoch and Smith (1999), were being formed in large clusters across the surfaces of both the HDPE and PVC. The manganese peak area from the EDS spectrum analysis of the micro-nodules was significantly larger than was measured in the biofilm when these micro-nodules were absent. The scanning confocal laser microscope (SCLM) images of three-week samples showed high bacterial activity around areas where manganese micro-nodules were starting to form on the pipe surface.


2019 ◽  
Author(s):  
Claudia Dawson ◽  
◽  
Samara Ord ◽  
Daniel M. Sturmer ◽  
J. Caleb Chappell ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document