Autophagy and Apoptosis in the Midgut Epithelium of Millipedes

2019 ◽  
Vol 25 (4) ◽  
pp. 1004-1016 ◽  
Author(s):  
M.M. Rost-Roszkowska ◽  
J. Vilimová ◽  
K. Tajovský ◽  
A. Chachulska-Żymełka ◽  
A. Sosinka ◽  
...  

AbstractThe process of autophagy has been detected in the midgut epithelium of four millipede species: Julus scandinavius, Polyxenus lagurus, Archispirostreptus gigas, and Telodeinopus aoutii. It has been examined using transmission electron microscopy (TEM), which enabled differentiation of cells in the midgut epithelium, and some histochemical methods (light microscope and fluorescence microscope). While autophagy appeared in the cytoplasm of digestive, secretory, and regenerative cells in J. scandinavius and A. gigas, in the two other species, T. aoutii and P. lagurus, it was only detected in the digestive cells. Both types of macroautophagy, the selective and nonselective processes, are described using TEM. Phagophore formation appeared as the first step of autophagy. After its blind ends fusion, the autophagosomes were formed. The autophagosomes fused with lysosomes and were transformed into autolysosomes. As the final step of autophagy, the residual bodies were detected. Autophagic structures can be removed from the midgut epithelium via, e.g., atypical exocytosis. Additionally, in P. lagurus and J. scandinavius, it was observed as the neutralization of pathogens such as Rickettsia-like microorganisms. Autophagy and apoptosis ca be analyzed using TEM, while specific histochemical methods may confirm it.

Author(s):  
Alan N. Hodgson

The hermaphrodite duct of pulmonate snails connects the ovotestis to the fertilization pouch. The duct is typically divided into three zones; aproximal duct which leaves the ovotestis, the middle duct (seminal vesicle) and the distal ovotestis duct. The seminal vesicle forms the major portion of the duct and is thought to store sperm prior to copulation. In addition the duct may also play a role in sperm maturation and degredation. Although the structure of the seminal vesicle has been described for a number of snails at the light microscope level there appear to be only two descriptions of the ultrastructure of this tissue. Clearly if the role of the hermaphrodite duct in the reproductive biology of pulmonatesis to be understood, knowledge of its fine structure is required.Hermaphrodite ducts, both containing and lacking sperm, of species of the terrestrial pulmonate genera Sphincterochila, Levantina, and Helix and the marine pulmonate genus Siphonaria were prepared for transmission electron microscopy by standard techniques.


Author(s):  
J. A. Hugo ◽  
V. A. Phillips

Recent work in our laboratory has shown that cut surfaces which are perfect when viewed in the light microscope may be prepared by ultramicrotomy using a diamond knife. Alloys successfully examined include Pb-Sn, Sn-Bi, Al-Mg, Cu-Al, and Cu-Co. After a normal etch, a Sn-5% Bi alloy showed no damage by replication electron microscopy over extensive areas. Although the cut surface may be flat, the question of whether or not there is an internally damaged layer remains unanswered. This is particularly pertinent to the use of ultramicrotomed slices for transmission electron microscopy, since damage left on the cut surface would be incorporated in the next slice cut, furthermore, if the damage layer were deep there could be a cumulative effect, so that damage from two or more previous cuts could be incorporated in a slice, in addition to that resulting from the shear during cutting.


2003 ◽  
Vol 51 (5) ◽  
pp. 605-612 ◽  
Author(s):  
Ying Ren ◽  
Michael J. Kruhlak ◽  
David P. Bazett-Jones

Correlative imaging of a specific cell with both the light microscope and the electron microscope has proved to be a difficult task, requiring enormous amounts of patience and technical skill. We describe a technique with a high rate of success, which can be used to identify a particular cell in the light microscope and then to embed and thin-section it for electron microscopy. The technique also includes a method to obtain many uninterrupted, thin serial sections for imaging by conventional or energy-filtered transmission electron microscopy, to obtain images for 3D analysis of detail at the suborganelle level.


Parasitology ◽  
1970 ◽  
Vol 61 (2) ◽  
pp. 219-227 ◽  
Author(s):  
H. D. Chapman ◽  
R. A. Wilson

The distribution of the integumentary papillae of the cercaria ofHimasthla secundahas been studied by a variety of techniques. Structures stained by silver nitrate and visible under the light microscope correspond in their spatial distribution with papillae observed under the scanning electron microscope. The tegumentary papillae described with the light and scanning electron microscope are correlated with the specialized nerve endings in the tegument as seen in transmission electron microscopy. The ultrastructure of these papillae is examined by conventional transmission electron microscopy and the probability that these structures are sensory is discussed.


Zygote ◽  
2004 ◽  
Vol 12 (1) ◽  
pp. 71-73 ◽  
Author(s):  
Arkadiy A. Reunov ◽  
Alexander V. Kalachev ◽  
Olga V. Yurchenko ◽  
Doris W.T. Au

Phagocytic resorption during spermatogenesis was studied in the sea urchin Anthocidaris crassispina. Nutritive phagocytes in gonad absorbed both waste sperm cells and residual bodies discarded from maturing spermatids, and these materials were subsequently compartmented in heterophagosomes. Based on 180 heterophagosomes examined by transmission electron microscopy, over 99% of heterophagosomes contained either residual bodies or sperm cells only. Simultaneous resorption of sperm cells and residual bodies in a heterophagosome was uncommon, with only ∼0.56% occurrence, suggesting that heterophagosomes have a selective resorption ability in nutritive phagocytes.


2015 ◽  
Vol 21 (2) ◽  
pp. 368-376 ◽  
Author(s):  
Paula Badea ◽  
Amelia Petrescu ◽  
Lucia Moldovan ◽  
Otilia Zarnescu

AbstractIntraluminal contents of benign and malignant prostatic tissue are associated with varying forms of acellular structures. These include corpora amylacea, prostatic calculi, and prostatic crystalloids. There are relatively few microscopy studies about the characterization of intraluminal structures from benign and malignant prostatic glands and little is known about their chemical composition. In the present study, we used a combination of special histochemical methods, immunohistochemistry, and transmission electron microscopy to characterize intraluminal contents of benign and malignant prostate glands. The study was done on 33 radical prostatectomy and four transurethral resections of prostate specimens. Histochemical methods such as von Kossa, autometallography (AMG), as well as PSA immunohistochemistry and transmission electron microscopy were performed to characterize intraluminal contents of benign and malignant prostate glands. Von Kossa staining was observed in acellular structures, corpora amylacea, prostatic calculi, and calcified blood vessels. AMG staining was observed in the lumen of small glands, in the epithelium lining prostate glands, and corpora amylacea. PSA staining showed prostatic glands with both positive and negative corpora amylacea and epithelial cells. Ultrastructural observation revealed the presence of a variety of highly heterogeneous aggregates composed of fibrillar elements that were similar to those of amyloid.


Author(s):  
G. G. Shaw

The morphology and composition of the fiber-matrix interface can best be studied by transmission electron microscopy and electron diffraction. For some composites satisfactory samples can be prepared by electropolishing. For others such as aluminum alloy-boron composites ion erosion is necessary.When one wishes to examine a specimen with the electron beam perpendicular to the fiber, preparation is as follows: A 1/8 in. disk is cut from the sample with a cylindrical tool by spark machining. Thin slices, 5 mils thick, containing one row of fibers, are then, spark-machined from the disk. After spark machining, the slice is carefully polished with diamond paste until the row of fibers is exposed on each side, as shown in Figure 1.In the case where examination is desired with the electron beam parallel to the fiber, preparation is as follows: Experimental composites are usually 50 mils or less in thickness so an auxiliary holder is necessary during ion milling and for easy transfer to the electron microscope. This holder is pure aluminum sheet, 3 mils thick.


Author(s):  
R. W. Anderson ◽  
D. L. Senecal

A problem was presented to observe the packing densities of deposits of sub-micron corrosion product particles. The deposits were 5-100 mils thick and had formed on the inside surfaces of 3/8 inch diameter Zircaloy-2 heat exchanger tubes. The particles were iron oxides deposited from flowing water and consequently were only weakly bonded. Particular care was required during handling to preserve the original formations of the deposits. The specimen preparation method described below allowed direct observation of cross sections of the deposit layers by transmission electron microscopy.The specimens were short sections of the tubes (about 3 inches long) that were carefully cut from the systems. The insides of the tube sections were first coated with a thin layer of a fluid epoxy resin by dipping. This coating served to impregnate the deposit layer as well as to protect the layer if subsequent handling were required.


Author(s):  
S. Fujishiro

The mechanical properties of three titanium alloys (Ti-7Mo-3Al, Ti-7Mo- 3Cu and Ti-7Mo-3Ta) were evaluated as function of: 1) Solutionizing in the beta field and aging, 2) Thermal Mechanical Processing in the beta field and aging, 3) Solutionizing in the alpha + beta field and aging. The samples were isothermally aged in the temperature range 300° to 700*C for 4 to 24 hours, followed by a water quench. Transmission electron microscopy and X-ray method were used to identify the phase formed. All three alloys solutionized at 1050°C (beta field) transformed to martensitic alpha (alpha prime) upon being water quenched. Despite this heavily strained alpha prime, which is characterized by microtwins the tensile strength of the as-quenched alloys is relatively low and the elongation is as high as 30%.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document