scholarly journals Improvement of Electron Probe Microanalysis of Boron Concentration in Silicate Glasses

2019 ◽  
Vol 25 (4) ◽  
pp. 874-882 ◽  
Author(s):  
Lining Cheng ◽  
Chao Zhang ◽  
Xiaoyan Li ◽  
Renat R. Almeev ◽  
Xiaosong Yang ◽  
...  

AbstractThe determination of low boron concentrations in silicate glasses by electron probe microanalysis (EPMA) remains a significant challenge. The internal interferences from the diffraction crystal, i.e. the Mo-B4C large d-spacing layered synthetic microstructure crystal, can be thoroughly diminished by using an optimized differential mode of pulse height analysis (PHA). Although potential high-order spectral interferences from Ca, Fe, and Mn on the BKα peak can be significantly reduced by using an optimized differential mode of PHA, a quantitative calibration of the interferences is required to obtain accurate boron concentrations in silicate glasses that contain these elements. Furthermore, the first-order spectral interference from ClL-lines is so strong that they hinder reliable EPMA of boron concentrations in Cl-bearing silicate glasses. Our tests also indicate that, due to the strongly curved background shape on the high-energy side of BKα, an exponential regression is better than linear regression for estimating the on-peak background intensity based on measured off-peak background intensities. We propose that an optimal analytical setting for low boron concentrations in silicate glasses (≥0.2 wt% B2O3) would best involve a proper boron-rich glass standard, a low accelerating voltage, a high beam current, a large beam size, and a differential mode of PHA.

2018 ◽  
Vol 30 (4) ◽  
pp. 834-842 ◽  
Author(s):  
Xing Zhang ◽  
Shuiyuan Yang ◽  
He Zhao ◽  
Shaoyong Jiang ◽  
Ruoxi Zhang ◽  
...  

2001 ◽  
Vol 31 (2) ◽  
pp. 118-125 ◽  
Author(s):  
Hideyuki Takahashi ◽  
Ian Harrowfield ◽  
Colin MacRae ◽  
Nick Wilson ◽  
Kenichi Tsutsumi

2010 ◽  
Vol 16 (S2) ◽  
pp. 34-35 ◽  
Author(s):  
H Takahashi ◽  
N Handa ◽  
T Murano ◽  
M Terauchi ◽  
M Koike ◽  
...  

Extended abstract of a paper presented at Microscopy and Microanalysis 2010 in Portland, Oregon, USA, August 1 – August 5, 2010.


2009 ◽  
Vol 42 (2) ◽  
pp. 253-258 ◽  
Author(s):  
Monica Dapiaggi ◽  
Andy N. Fitch

This paper reports the accurate measurement of the ReO3cell parameter as a function of temperature. The thermal expansion is confirmed to be negative over most of the temperature range from 5 to 300 K. The main problems with the measurements are the very small variations (in the range of 10−5 Å) in the cell parameter at each temperature, requiring tight control of the stability and reliability of instrumental effects. In particular, achieving monochromator stability over time might be challenging with the high energy and high beam current variations of a third-generation synchrotron facility. On the other hand, such effects are usually checked by the addition of silicon as an internal standard, but the accuracy (and precision) of the published thermal expansion (which is not certified) might not be sufficient for its use when dealing with very small cell parameter variations.


1998 ◽  
Vol 4 (S2) ◽  
pp. 162-163
Author(s):  
Kurt F. J. Heinrich

In February 1968 Ray Fitzgerald, Klaus Keil and myself published in Science a communication titled “Solid-State Energy-Dispersion Spectrometer for Electron Microprobe X-ray Analysis”. The authors describe the use of a lithium-drifted silicon detector for the direct identification of x-rays, without a diffracting crystal, in an electron probe. The subject of this paper was to modify profoundly the development of x-ray microanalysis in the years to follow.Pulse-height analysis of gamma rays detected in scintillation counters was widely used at the time. For radiation of energies below 30 keV, gas proportional counters were also employed. In elementary analysis by x-rays the poor energy resolution of these detectors limited the application of such a procedure, although single-channel pulse height analysis was employed as an adjunct to crystal spectrometers.In 1951, Raymond Castaing in his thesis described his invention of the electron probe microanalyzer, created by adding to a transmission electron microscope a curved-crystal spectrometer which focused the x-rays emitted by the specimen into a Geiger-Muller counter.


Author(s):  
Claude Lechene

Electron probe microanalysis of frozen hydrated kidneysThe goal of the method is to measure on the same preparation the chemical elemental content of the renal luminal tubular fluid and of the surrounding renal tubular cells. The following method has been developed. Rat kidneys are quenched in solid nitrogen. They are trimmed under liquid nitrogen and mounted in a copper holder using a conductive medium. Under liquid nitrogen, a flat surface is exposed by sawing with a diamond saw blade at constant speed and constant pressure using a custom-built cryosaw. Transfer into the electron probe column (Cameca, MBX) is made using a simple transfer device maintaining the sample under liquid nitrogen in an interlock chamber mounted on the electron probe column. After the liquid nitrogen is evaporated by creating a vacuum, the sample is pushed into the special stage of the instrument. The sample is maintained at close to liquid nitrogen temperature by circulation of liquid nitrogen in the special stage.


Author(s):  
P.E. Batson

Use of the STEM to obtain precise electronic information has been hampered by the lack of energy loss analysis capable of a resolution and accuracy comparable to the 0.3eV energy width of the Field Emission Source. Recent work by Park, et. al. and earlier by Crewe, et. al. have promised magnetic sector devices that are capable of about 0.75eV resolution at collection angles (about 15mR) which are great enough to allow efficient use of the STEM probe current. These devices are also capable of 0.3eV resolution at smaller collection angles (4-5mR). The problem that arises, however, lies in the fact that, even with the collection efficiency approaching 1.0, several minutes of collection time are necessary for a good definition of a typical core loss or electronic transition. This is a result of the relatively small total beam current (1-10nA) that is available in the dedicated STEM. During this acquisition time, the STEM acceleration voltage may fluctuate by as much as 0.5-1.0V.


Author(s):  
R. Packwood ◽  
M.W. Phaneuf ◽  
V. Weatherall ◽  
I. Bassignana

The development of specialized analytical instruments such as the SIMS, XPS, ISS etc., all with truly incredible abilities in certain areas, has given rise to the notion that electron probe microanalysis (EPMA) is an old fashioned and rather inadequate technique, and one that is of little or no use in such high technology fields as the semiconductor industry. Whilst it is true that the microprobe does not possess parts-per-billion sensitivity (ppb) or monolayer depth resolution it is also true that many times these extremes of performance are not essential and that a few tens of parts-per-million (ppm) and a few tens of nanometers depth resolution is all that is required. In fact, the microprobe may well be the second choice method for a wide range of analytical problems and even the method of choice for a few.The literature is replete with remarks that suggest the writer is confusing an SEM-EDXS combination with an instrument such as the Cameca SX-50. Even where this confusion does not exist, the literature discusses microprobe detection limits that are seldom stated to be as low as 100 ppm, whereas there are numerous element combinations for which 10-20 ppm is routinely attainable.


Sign in / Sign up

Export Citation Format

Share Document