In Situ Observation of the Early Stages of Rapid Solid–Liquid Reaction in Closed Liquid Cell TEM Using Graphene Encapsulation

2021 ◽  
pp. 1-8
Author(s):  
Hyun Woo Cha ◽  
Byeong-Seon An ◽  
Cheol-Woong Yang

In situ liquid cell transmission electron microscopy (TEM) is a very useful tool for investigating dynamic solid–liquid reactions. However, there are challenges to observe the early stages of spontaneous solid–liquid reactions using a closed-type liquid cell system, the most popular and simple liquid cell system. We propose a graphene encapsulation method to overcome this limitation of closed-type liquid cell TEM. The solid and liquid are separated using graphene to suspend the reaction until the graphene layer is destroyed. Graphene can be decomposed by the high-energy electron beam used in TEM, allowing the reaction to proceed. Fast dissolution of graphene-capped copper nanoparticles in an FeCl3 solution was demonstrated via in situ liquid cell TEM at 300 kV using a cell with closed-type SiNx windows.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kanishka Kobbekaduwa ◽  
Shreetu Shrestha ◽  
Pan Adhikari ◽  
Exian Liu ◽  
Lawrence Coleman ◽  
...  

AbstractWe in-situ observe the ultrafast dynamics of trapped carriers in organic methyl ammonium lead halide perovskite thin films by ultrafast photocurrent spectroscopy with a sub-25 picosecond time resolution. Upon ultrafast laser excitation, trapped carriers follow a phonon assisted tunneling mechanism and a hopping transport mechanism along ultra-shallow to shallow trap states ranging from 1.72–11.51 millielectronvolts and is demonstrated by time-dependent and independent activation energies. Using temperature as an energetic ruler, we map trap states with ultra-high energy resolution down to < 0.01 millielectronvolt. In addition to carrier mobility of ~4 cm2V−1s−1 and lifetime of ~1 nanosecond, we validate the above transport mechanisms by highlighting trap state dynamics, including trapping rates, de-trapping rates and trap properties, such as trap density, trap levels, and capture-cross sections. In this work we establish a foundation for trap dynamics in high defect-tolerant perovskites with ultra-fast temporal and ultra-high energetic resolution.


2019 ◽  
Vol 6 (20) ◽  
pp. 1970126 ◽  
Author(s):  
Andreas Hutzler ◽  
Birk Fritsch ◽  
Michael P. M. Jank ◽  
Robert Branscheid ◽  
R. Christian Martens ◽  
...  

2020 ◽  
Vol 91 (9) ◽  
pp. 093901
Author(s):  
C. Gombola ◽  
G. Hasemann ◽  
A. Kauffmann ◽  
I. Sprenger ◽  
S. Laube ◽  
...  

2005 ◽  
Vol 16 (1-4) ◽  
pp. 107-110
Author(s):  
A. P. Shpak ◽  
O. P. Fedorov ◽  
E. L. Zhivolub ◽  
Y. J. Bersudskyy ◽  
O. V. Shuleshova

Sign in / Sign up

Export Citation Format

Share Document