scholarly journals Origin of life: LUCA and extracellular membrane vesicles (EMVs)

2015 ◽  
Vol 15 (1) ◽  
pp. 7-15 ◽  
Author(s):  
S. Gill ◽  
P. Forterre

AbstractCells from the three domains of life produce extracellular membrane vesicles (EMVs), suggesting that EMV production is an important aspect of cellular physiology. EMVs have been implicated in many aspects of cellular life in all domains, including stress response, toxicity against competing strains, pathogenicity, detoxification and resistance against viral attack. These EMVs represent an important mode of inter-cellular communication by serving as vehicles for transfer of DNA, RNA, proteins and lipids between cells. Here, we review recent progress in the understanding of EMV biology and their various roles. We focus on the role of membrane vesicles in early cellular evolution and how they would have helped shape the nature of the last universal common ancestor. A membrane-protected micro-environment would have been a key to the survival of spontaneous molecular systems and efficient metabolic reactions. Interestingly, the morphology of EMVs is strongly reminiscent of the morphology of some virions. It is thus tempting to make a link between the origin of the first protocell via the formation of vesicles and the origin of viruses.

2020 ◽  
Vol 96 (12) ◽  
Author(s):  
Michael Wells ◽  
John F Stolz

ABSTRACT Selenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.


2017 ◽  
Vol 474 (14) ◽  
pp. 2277-2299 ◽  
Author(s):  
Anthony J. Michael

Since the emergence of the last common ancestor from which all extant life evolved, the metabolite repertoire of cells has increased and diversified. Not only has the metabolite cosmos expanded, but the ways in which the same metabolites are made have diversified. Enzymes catalyzing the same reaction have evolved independently from different protein folds; the same protein fold can produce enzymes recognizing different substrates, and enzymes performing different chemistries. Genes encoding useful enzymes can be transferred between organisms and even between the major domains of life. Organisms that live in metabolite-rich environments sometimes lose the pathways that produce those same metabolites. Fusion of different protein domains results in enzymes with novel properties. This review will consider the major evolutionary mechanisms that generate biosynthetic diversity: gene duplication (and gene loss), horizontal and endosymbiotic gene transfer, and gene fusion. It will also discuss mechanisms that lead to convergence as well as divergence. To illustrate these mechanisms, one of the original metabolisms present in the last universal common ancestor will be employed: polyamine metabolism, which is essential for the growth and cell proliferation of archaea and eukaryotes, and many bacteria.


2011 ◽  
Vol 278 (1723) ◽  
pp. 3321-3328 ◽  
Author(s):  
Emmanuel G. Reynaud ◽  
Damien P. Devos

The question as to the origin and relationship between the three domains of life is lodged in a phylogenetic impasse. The dominant paradigm is to see the three domains as separated. However, the recently characterized bacterial species have suggested continuity between the three domains. Here, we review the evidence in support of this hypothesis and evaluate the implications for and against the models of the origin of the three domains of life. The existence of intermediate steps between the three domains discards the need for fusion to explain eukaryogenesis and suggests that the last universal common ancestor was complex. We propose a scenario in which the ancestor of the current bacterial Planctomycetes, Verrucomicrobiae and Chlamydiae superphylum was related to the last archaeal and eukaryotic common ancestor, thus providing a way out of the phylogenetic impasse.


Author(s):  
Sávio Farias ◽  
Marco Jose ◽  
Francisco Prosdocimi

Cells occupy a prominent place in the history of life on planet Earth. The central role of cellular organization is observed by the fact that “cellular life” is often used as a synonym for life itself. Thus, most characteristics used to define cells overlap with the ones used to define life. Notwithstanding, new scenarios about the origin of life are bringing alternative views to describe how cells may have evolved from the open biological systems named progenotes. Here, using a logical and conceptual analysis, we re-evaluate the characteristics used to infer a single origin for cells. We argue that some evidences used to support cell monophyly, such as the presence of elements from both the translation mechanism and the universality of the genetic code, actually indicate a unique origin for all “biological systems”, a term used to define not only cells, but also virus and progenotes. Besides, we present evidence that at least two biochemical pathways as important as (i) DNA replication and (ii) lipid biosynthesis may not homologous between Bacteria and Archaea. The identities observed between the proteins involved in those pathways along representatives of these two ancestral Domains are too low to indicate common genic ancestry. Altogether these facts can be seen as an indication that cellular organization has possibly evolved two or more times and that LUCA (the Last Universal Common Ancestor) might not have existed as a cellular entity. Thus, we aim to consider the possibility that different strategies acquired by biological systems to exist, such as viral, bacterial and archaeal were originated independently from the evolution of different progenote populations.


2014 ◽  
Author(s):  
Arcady Mushegian

I review recent literature on the reconstruction of gene repertoire of the Last Universal Common Ancestor of cellular life (LUCA). The form of the phylogenetic record of cellular life on Earth is important to know in order to reconstruct any ancestral state; therefore I also discuss the emerging understanding that this record does not take the form of a tree. I argue that despite this, “tree-thinking” remains an essential component in evolutionary thinking and that “pattern pluralism” in evolutionary biology can be only epistemological, but not ontological.


2019 ◽  
Vol 03 (01) ◽  
pp. 20-28
Author(s):  
Nick Lane

The concept of the three domains of life (the bacteria, archaea and eukaryotes) goes back to Carl Woese in 1990 1 . Most scientists now see the eukaryotes (cells with a true nucleus) as a secondary domain, derived from bacteria and archaea via an endosymbiosis 2 . That makes the last universal common ancestor of life (LUCA) the ancestor of bacteria and archaea 3 . While these domains are strikingly different in their genetics and biochemistry 4 , they are nearly indistinguishable in their cellular morphology — historically, both groups have been classed as prokaryotes. In terms of their metabolic versatility and molecular machinery, prokaryotes are if anything more sophisticated than eukaryotes 5 . Yet despite an exhaustive search of genetic sequence space in virtually infinite populations over four billion years, neither domain evolved morphological complexity to compare with eukaryotes 5 . The evolutionary path to morphological complexity does not seem to depend on genetic information alone 6 . The most plausible explanation is that physical constraints stemming from the topological structure of prokaryotes blocked the evolution of morphological complexity in prokaryotes, and that the endosymbiosis at the origin of eukaryotes relieved these constraints 6 . In this lecture, I shall argue that the dependence of all life on electrical charges across membranes to generate energy explains the structural constraints on prokaryotes, and the escape from these constraints in eukaryotes 7 .


Author(s):  
Francisco Prosdocimi ◽  
Marco V José ◽  
Sávio Torres de Farias

The existence of a common ancestor to all living organisms in Earth is a necessary corollary of Darwin idea of common ancestry. The Last Universal Common Ancestor (LUCA) has been normally considered as the ancestor of cellular organisms that originated the three domains of life: Bacteria, Archaea and Eukarya. Recent studies about the nature of LUCA indicate that this first organism should present hundreds of genes and a complex metabolism. Trying to bring another of Darwin ideas into the origins of life discussion, we went back into the prebiotic chemistry trying to understand how LUCA could be originated under gradualist assumptions. Along this line of reasoning, it became clear to us that the definition of another ancestral should be of particular relevance to the understanding about the emergence of biological systems. Together with the view of biology as a language for chemical translation, on which proteins are encoded into nucleic acids polymers, we glimpse a point in the deep past on which this Translation mechanism could have taken place. Thus, we propose the emergence of this process shared by all biological systems as a point of interest and propose the existence of this non-cellular entity named FUCA, as the First Universal Common Ancestor. FUCA was born in the very instant on which RNA-world replicators started to be capable to catalyze the bonding of amino acids into oligopeptides. FUCA has been considered mature when the translation system apparatus has been assembled together with the establishment of a primeval, possibly error-prone genetic code. This is FUCA, the great-grandmother of LUCA.


Author(s):  
Tomasz Zajkowski ◽  
Michael D. Lee ◽  
Shamba S. Mondal ◽  
Amanda Carbajal ◽  
Robert Dec ◽  
...  

AbstractPrions are proteins capable of acquiring an alternate conformation that can then induce additional copies to adopt this same alternate conformation. Although initially discovered in relation to mammalian disease, subsequent studies have revealed the presence of prions in Bacteria and Viruses, suggesting an ancient evolutionary origin. Here we explore whether prions exist in Archaea - the last domain of life left unexplored with regard to prions. After searching for potential prion-forming protein sequences computationally, we tested candidates in vitro and in organisms from the two other domains of life: Escherichia coli and Saccharomyces cerevisiae. Out of the 16 candidate prion-forming domains tested, 8 bound to amyloid-specific dye, and six acted as protein-based elements of information transfer, driving non-Mendelian patterns of inheritance. We additionally identified short peptides from archaeal prion candidates that can form amyloid fibrils independently. Candidates that tested positively in our assays had significantly higher tyrosine and phenylalanine content than candidates that tested negatively, suggesting that the presence of these amino acids may help distinguish functional prion domains from nonfunctional ones. Our data establish the presence of amyloid-forming prion-like domains in Archaea. Their discovery in all three domains of life further suggests the possibility that they were present at the time of the last universal common ancestor (LUCA).Significance StatementThis work establishes that amyloid-forming, prion-like domains exist in Archaea and are capable of vertically transmitting their prion phenotype – allowing them to function as protein-based elements of inheritance. These observations, coupled with prior discoveries in Eukarya and Bacteria, suggest that prion-based self-assembly was likely present in life’s last universal common ancestor (LUCA), and therefore may be one of the most ancient epigenetic mechanisms.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Nika Pende ◽  
Adrià Sogues ◽  
Daniela Megrian ◽  
Anna Sartori-Rupp ◽  
Patrick England ◽  
...  

AbstractMost archaea divide by binary fission using an FtsZ-based system similar to that of bacteria, but they lack many of the divisome components described in model bacterial organisms. Notably, among the multiple factors that tether FtsZ to the membrane during bacterial cell constriction, archaea only possess SepF-like homologs. Here, we combine structural, cellular, and evolutionary analyses to demonstrate that SepF is the FtsZ anchor in the human-associated archaeon Methanobrevibacter smithii. 3D super-resolution microscopy and quantitative analysis of immunolabeled cells show that SepF transiently co-localizes with FtsZ at the septum and possibly primes the future division plane. M. smithii SepF binds to membranes and to FtsZ, inducing filament bundling. High-resolution crystal structures of archaeal SepF alone and in complex with the FtsZ C-terminal domain (FtsZCTD) reveal that SepF forms a dimer with a homodimerization interface driving a binding mode that is different from that previously reported in bacteria. Phylogenetic analyses of SepF and FtsZ from bacteria and archaea indicate that the two proteins may date back to the Last Universal Common Ancestor (LUCA), and we speculate that the archaeal mode of SepF/FtsZ interaction might reflect an ancestral feature. Our results provide insights into the mechanisms of archaeal cell division and pave the way for a better understanding of the processes underlying the divide between the two prokaryotic domains.


Sign in / Sign up

Export Citation Format

Share Document