Assessment of DNA methylation pattern under drought stress using methylation-sensitive randomly amplified polymorphism analysis in rice

2020 ◽  
Vol 18 (4) ◽  
pp. 222-230
Author(s):  
Harihar Sapna ◽  
Narasimha Ashwini ◽  
Sampangiramareddy Ramesh ◽  
Karaba N. Nataraja

AbstractDNA methylation is known to regulate gene expression when plants are exposed to abiotic stress such as drought. Therefore, insight into DNA methylation pattern would be useful for a better understanding of the expression profile of genes associated with drought adaptation. In the present study, we attempted to analyse the DNA methylation pattern at the whole-genome level and the expression of a few drought-responsive genes in rice under different regimes of soil water status, i.e. puddled, 100 and 60% field capacities (FC). The methylation-sensitive randomly amplified polymorphic DNA analysis was employed to identify DNA methylation pattern. We observed an increase in DNA methylation at 60% FC, and reduced methylation under 100% FC compared to puddled condition. The genes such as protein phosphatases (PP2C) and phenylalanine ammonia-lyase (PAL) having CpG islands in their promoter region had lower expression level under 100 and 60% FC compared to puddled conditions. Heat shock protein 70 (HSP70) and RNA helicase 25 (RH25), with no CpG islands in their promoter region, exhibited enhanced expression compared to puddled plants. In rice, increased DNA methylation seems to be an important mechanism associated with drought responses, which probably regulates the methylation-sensitive gene expression. The drought-induced changes in DNA methylation would contribute for epigenetic mechanism. The study provided evidence to argue that drought-induced increased methylation might be one of the major mechanisms associated with acclimation responses in field crops like rice.

2018 ◽  
pp. 383-389
Author(s):  
R. MURÍN ◽  
M. ABDALLA ◽  
N. MURÍNOVÁ ◽  
J. HATOK ◽  
D. DOBROTA

The fundamental biochemical processes of 5-methylcytosine (5-mC) synthesis, maintenance, conversion and removal determine the time and spatial pattern of DNA methylation. This has a strong effect on a plethora of physiological aspects of cellular metabolism. While the presence of 5-mC within the promoter region can silence gene expression, its derivative – 5-hydroxymethylcytosine exerts an opposite effect. Dysregulations in the metabolism of 5-mC lead to an altered DNA methylation pattern which is linked with a disrupted epigenome, and are considered to play a significant part in the etiology of several human diseases. A summary of recent knowledge about the molecular processes participating in DNA methylation pattern shaping is provided here.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 4386-4386
Author(s):  
Ye Zhao ◽  
Zi-xing Chen ◽  
Shao-yan Hu ◽  
Jian-nong Cen

Abstract The methylation at CpG island in the promoter region of a gene is one of the important epigenetic mechanism which regulates the gene activity. To study the DNA methylation pattern of WT1 gene promoter region within hematologic neoplastic cell lines and its correlation with WT1 gene expression by using the PCR-based methods. RT-PCR and Methylation-specific PCR were performed to study the WT1 gene expression in 8226, HL-60, Jurkat, K562, KG-1, NB4, Raji, SHI-1, U266 and U937 cell lines and the DNA methylation status in promoter region of WT1 gene. After treatment of U937 cell line by 5-aza-CdR, a demethylation inducing agent, the changes of WT1 gene expression level and the methylation status in its promter region in U937 cells was determined. Our Results showed that HL-60, K562, KG-1, NB4, SHI-1 cell lines demonstrated higher level of WT1 expression, while extremely low level was found in 8226, Jurkat, Raji, U266 and U937. The DNA hypermethylation in WT1 gene promoter region was identified in 8226, Jurkat, Raji, U266 and U937 cell lines. The WT1 gene expression in U937 was markedly enhanced after treatment with 5-aza-CdR in company with the decrease of methylated level and the increase of unmethylated level in its promoter region. These results indicate that modulation of the DNA methylation in WT1 promoter region is one of the epigenetic mechanisms to regulate its expression.


2021 ◽  
Vol 9 ◽  
Author(s):  
Marco Gerdol ◽  
Claudia La Vecchia ◽  
Maria Strazzullo ◽  
Pasquale De Luca ◽  
Stefania Gorbi ◽  
...  

DNA methylation is an essential epigenetic mechanism influencing gene expression in all organisms. In metazoans, the pattern of DNA methylation changes during embryogenesis and adult life. Consequently, differentiated cells develop a stable and unique DNA methylation pattern that finely regulates mRNA transcription during development and determines tissue-specific gene expression. Currently, DNA methylation remains poorly investigated in mollusks and completely unexplored in Mytilus galloprovincialis. To shed light on this process in this ecologically and economically important bivalve, we screened its genome, detecting sequences homologous to DNA methyltransferases (DNMTs), methyl-CpG-binding domain (MBD) proteins and Ten-eleven translocation methylcytosine dioxygenase (TET) previously described in other organisms. We characterized the gene architecture and protein domains of the mussel sequences and studied their phylogenetic relationships with the ortholog sequences from other bivalve species. We then comparatively investigated their expression levels across different adult tissues in mussel and other bivalves, using previously published transcriptome datasets. This study provides the first insights on DNA methylation regulators in M. galloprovincialis, which may provide fundamental information to better understand the complex role played by this mechanism in regulating genome activity in bivalves.


2019 ◽  
Author(s):  
Ramesh S. Bhat ◽  
J. Rockey ◽  
Kenta Shirasawa ◽  
I. S. Tilak ◽  
M. P. Brijesh Patil ◽  
...  

Abstract Objective Low DNA sequence polymorphism despite enormous phenotypic variations in peanut indicates the possible role of epigenetic variations. An attempt was made to analyze genome-wide DNA methylation pattern and its influence on gene expression across 11 diverse genotypes of peanut. Results The genotypes were subjected to bisulfite sequencing after 21 days of sowing (DAS). CHG regions showed the highest (3,05,37,376) of DNA methylation followed by CpG (3,03,56,066) and CHH (1,59,93,361) across 11 genotypes. The B sub-genome exhibited higher DNA methylation sites (4,62,94,063) than the A sub-genome (3,04,15,166). Overall, the DNA methylation was more frequent in inter-genic regions than in the genic regions. A few genes showed altered methylation and expression between the parent and its EMS-derived mutant. Foliar disease resistant genotypes showed significant differential DNA methylation at 766 sites corresponding to 25 genes. Of them, two genes (Arahy.1XYC2X on chromosome 01 and Arahy.00Z2SH on chromosome 17) coding for senescence-associated protein showed differential expression with resistant genotypes recording higher fragments per kilobase of transcript per million mapped reads (FPKM). Overall, the study indicated the variation in the DNA methylation pattern among the diverse genotypes of peanut and its influence of gene expression, indicating the application of these epialleles in peanut breeding.


2013 ◽  
Vol 41 (3) ◽  
pp. 803-807 ◽  
Author(s):  
Sanne D. van Otterdijk ◽  
John C. Mathers ◽  
Gordon Strathdee

DNA methylation is an important epigenetic mechanism in mammalian cells. It occurs almost exclusively at CpG sites and has a key role in a number of biological processes. It plays an important part in regulating chromatin structure and has been best studied for its role in controlling gene expression. In particular, hypermethylation of gene promoters which have high levels of CpG sites, known as CpG islands, leads to gene inactivation. In healthy cells, however, it appears that only a small number of genes are controlled through promoter hypermethylation, such as genes on the inactivated X-chromosome or at imprinted loci, and most promoter-associated CpG islands remain methylation-free regardless of gene expression status. However, a large body of evidence has now shown that this protection from methylation not only breaks down in a number of pathological conditions (e.g. cancer), but also already occurs during the normal process of aging. The present review focuses on the methylation changes that occur during healthy aging and during disease development, and the potential links between them. We focus especially on the extent to which the acquisition of aberrant methylation changes during aging could underlie the development of a number of important age-related pathological conditions.


Sign in / Sign up

Export Citation Format

Share Document