scholarly journals The Molecular Spiral Structure in M51 Derived from CO(J=2-1) Line Observations

1989 ◽  
Vol 8 ◽  
pp. 575-577 ◽  
Author(s):  
M. Guélin ◽  
S. Garcia-Burillo ◽  
R. Blundell ◽  
J. Cernicharo ◽  
D. Despois ◽  
...  

AbstractWe present preliminary results of a high angular resolution-high sensitivity survey of CO(J = 2—1) line emission in M51 made with the IRAM 30 m telescope.

2020 ◽  
Vol 635 ◽  
pp. A15 ◽  
Author(s):  
S. Maret ◽  
A. J. Maury ◽  
A. Belloche ◽  
M. Gaudel ◽  
Ph. André ◽  
...  

The formation of protoplanetary disks is not well understood. To understand how and when these disks are formed, it is crucial to characterize the kinematics of the youngest protostars at a high angular resolution. Here we study a sample of 16 Class 0 protostars to measure their rotation profile at scales from 50 to 500 au and search for Keplerian rotation. We used high-angular-resolution line observations obtained with the Plateau de Bure Interferometer as part of the CALYPSO large program. From 13CO (J = 2−1), C18O (J = 2−1) and SO (Nj = 56−45) moment maps, we find that seven sources show rotation about the jet axis at a few hundred au scales: SerpS-MM18, L1448-C, L1448-NB, L1527, NGC 1333-IRAS 2A, NGC 1333-IRAS 4B, and SVS13-B. We analyzed the kinematics of these sources in the uv plane to derive the rotation profiles down to 50 au scales. We find evidence for Keplerian rotation in only two sources, L1527 and L1448-C. Overall, this suggests that Keplerian disks larger than 50 au are uncommon around Class 0 protostars. However, in some of the sources, the line emission could be optically thick and dominated by the envelope emission. Due to the optical thickness of these envelopes, some of the disks could have remained undetected in our observations.


2007 ◽  
Vol 3 (S242) ◽  
pp. 184-185
Author(s):  
D. Wong-McSweeney ◽  
G. A. Fuller ◽  
S. Etoka

AbstractHigh angular resolution observations are essential for understanding the nature of maser emission and the sources which excite it. Here we present preliminary results from MERLIN observations of three methanol masers from the Toruń survey. These MERLIN observations are being analysed as part of the interferometric component of the Methanol Multibeam (MMB) Survey which is surveying the Galactic plane at |b|≤2° for 6.67 GHz methanol maser sources.


2018 ◽  
Vol 610 ◽  
pp. A4 ◽  
Author(s):  
M. Guélin ◽  
N. A. Patel ◽  
M. Bremer ◽  
J. Cernicharo ◽  
A. Castro-Carrizo ◽  
...  

During their late pulsating phase, AGB stars expel most of their mass in the form of massive dusty envelopes, an event that largely controls the composition of interstellar matter. The envelopes, however, are distant and opaque to visible and NIR radiation: their structure remains poorly known and the mass-loss process poorly understood. Millimeter-wave interferometry, which combines the advantages of longer wavelength, high angular resolution and very high spectral resolution is the optimal investigative tool for this purpose. Mm waves pass through dust with almost no attenuation. Their spectrum is rich in molecular lines and hosts the fundamental lines of the ubiquitous CO molecule, allowing a tomographic reconstruction of the envelope structure. The circumstellar envelope IRC +10 216 and its central star, the C-rich TP-AGB star closest to the Sun, are the best objects for such an investigation. Two years ago, we reported the first detailed study of the CO(2–1) line emission in that envelope, made with the IRAM 30-m telescope. It revealed a series of dense gas shells, expanding at a uniform radial velocity. The limited resolution of the telescope (HPBW 11″) did not allow us to resolve the shell structure. We now report much higher angular resolution observations of CO(2–1), CO(1–0), CN(2–1) and C4H(24–23) made with the SMA, PdB and ALMA interferometers (with synthesized half-power beamwidths of 3″, 1″ and 0.3″, respectively). Although the envelope appears much more intricate at high resolution than with an 11″ beam, its prevailing structure remains a pattern of thin, nearly concentric shells. The average separation between the brightest CO shells is 16″ in the outer envelope, where it appears remarkably constant. Closer to the star (<40″), the shell pattern is denser and less regular, showing intermediary arcs. Outside the small (r< 0.3′′) dust formation zone, the gas appears to expand radially at a constant velocity, 14.5 km s-1, with small turbulent motions. Based on that property, we have reconstructed the 3D structure of the outer envelope and have derived the gas temperature and density radial profiles in the inner (r< 25′′) envelope. The shell-intershell density contrast is found to be typically 3. The over-dense shells have spherical or slightly oblate shapes and typically extend over a few steradians, implying isotropic mass loss. The regular spacing of shells in the outer envelope supports the model of a binary star system with a period of 700 yr and a near face-on elliptical orbit. The companion fly-by triggers enhanced episodes of mass loss near periastron. The densification of the shell pattern observed in the central part of the envelope suggests a more complex scenario for the last few thousand years.


1994 ◽  
Vol 154 ◽  
pp. 603-608
Author(s):  
Raymond N. Smartt ◽  
Serge Koutchmy ◽  
Jacques-Clair NoëNs

Emission-line and K-coronal observations in the IR have the significant advantage of reduced sky brightness compared with the visible, while the effects of seeing are also reduced. Moreover, strong lines are available in the near-IR. Examples of the current capabilities of IR coronal observations using conventional Lyot coronagraphs are discussed briefly. Photometric measurements using the two IR lines of Fe XIII (10,747 Å and 10,798 Å), together with the Fe XIII 3,388 Å line, have provided a valuable electron-density diagnostic, but with low-angular-resolution. The 10,747 Å line has high intrinsic polarization. It has been used for extensive coronal magnetic field measurements, but only the direction of the field, and that with modest angular resolution, has been achieved due basically to flux limitations. Such studies suffer from the lack of high angular resolution and high photon flux. Moreover, the chromatic properties of a singlet objective lens preclude simultaneous observations at widely-differing wavelengths of the important inner coronal region. A coronagraph based on a mirror objective avoids such problems. Further, comparatively high-resolution and high-sensitivity arrays are now available with quantum efficiencies up to 90%. Reflecting coronagraphs with advanced arrays then provide the possibility of obtaining high-resolution images in the infrared to carry out a wide variety of studies crucial to many of the outstanding problems in coronal physics. A program for the development of reflecting coronagraphs is described briefly, with an emphasis on applications to IR coronal studies.


1976 ◽  
Vol 3 (1) ◽  
pp. 7-11 ◽  
Author(s):  
K. J. Wellington

A major requirement of modern radio astronomy is the attainment of the highest possible angular resolution. This high angular resolution should be matched by a high sensitivity and by spectral and polarization capabilities. Study and experience have shown that no form of telescope is more effective in this respect than the aperture synthesis type. The past few years have seen a growing realization amongst astronomers, both here and overseas, of the need for a new synthesis telescope able to observe the full southern sky. This realization has been stimulated by several factors:


2020 ◽  
Vol 499 (2) ◽  
pp. 2493-2512
Author(s):  
Zulema Abraham ◽  
Pedro P B Beaklini ◽  
Pierre Cox ◽  
Diego Falceta-Gonçalves ◽  
Lars-Åke Nyman

ABSTRACT We present images of η Carinae in the recombination lines H30α and He30α and the underlying continuum with 50 mas resolution (110 au), obtained with ALMA. For the first time, the 230 GHz continuum image is resolved into a compact core, coincident with the binary system position, and a weaker extended structure to the NW of the compact source. Iso-velocity images of the H30α recombination line show at least 16 unresolved sources with velocities between −30 and −65 km s−1 distributed within the continuum source. A NLTE model, with density and temperature of the order of 107 cm−3 and 104 K, reproduce both the observed H30α line profiles and their underlying continuum flux densities. Three of these sources are identified with Weigelt blobs D, C, and B; estimating their proper motions, we derive ejection times (in years) of 1952.6, 1957.1, and 1967.6, respectively, all of which are close to periastron passage. Weaker H30α line emission is detected at higher positive and negative velocities, extending in the direction of the Homunculus axis. The He30α recombination line is also detected with the same velocity of the narrow H30α line. Finally, the close resemblance of the H30α image with that of an emission line that was reported in the literature as HCO+(4–3) led us to identify this line as H40δ instead, an identification that is further supported by modelling results. Future observations will enable to determine the proper motions of all the compact sources discovered in the new high angular resolution data of η Carinae.


2002 ◽  
Vol 199 ◽  
pp. 251-258
Author(s):  
A.R. Taylor

Until recently, high angular resolution and high sensitivity surveys of the radio emission from the plane of our Galaxy were available only at frequencies of several GHz, where large single dish radio telescopes provide arcminute scale angular resolution. At these frequencies thermal radiation from HII regions and diffuse ionized gas comprise a major component of the Galactic emission. Advances in wide field interferometric imaging techniques now make it possible to carry out high sensitivity surveys of the Galaxy with arcminute scale angular resolution at 1.4 GHz and below. Over the past few years initial synthesis surveys have been made. More ambitious surveys that combined sensitive continuum observations with full polarimetry and images of the 3-dimensional structure of atomic hydrogen gas at pc scales are currently underway in the northern (DRAO) and southern (ATNF) hemispheres. The interstellar medium of the Galaxy contains structure on all spatial scales, and these surveys combined data from aperture synthesis telescopes and signal dish antennas to provide full spatial frequency coverage to the resolution limit. Preliminary results reveal wide-spread features and processes in the the interstellar medium that are not readily visible by other means, including, for example, unusual atomic hydrogen structures related to the vertical transfer of matter and radiation between the disk and halo of the Galaxy, Faraday rotation structures that allow study of the magnetic field and diffuse ionized component in the plane of the Galaxy, and a cold atomic phase of the neutral medium that may provide a link between global shock phenomena in the galaxy and the formation of molecular clouds.


2001 ◽  
Vol 205 ◽  
pp. 66-69
Author(s):  
Margarita Karovska ◽  
T. Aldcroft ◽  
M.S. Elvis ◽  
I.N. Evans ◽  
G. Fabbiano ◽  
...  

We describe preliminary results from our study of multi-scale structures in Centaurus A (NGC 5128) obtained using the Chandra X-ray Observatory HRC-I observations. The high-angular resolution Chandra images reveal X-ray multi-scale structures in this object with unprecedented detail and clarity. The region surrounding the Cen A nucleus, believed to be associated with a supermassive black hole, shows structures on arcsecond scales clearly resolved from the central source.


2007 ◽  
Vol 3 (S248) ◽  
pp. 387-390
Author(s):  
A. F. Zakharov

AbstractAccording to a revised schedule of the Russian Space Agency, in October 2008 the 10 m space telescope RadioAstron will be launched in a high eccentric orbit around the Earth. Acting together with ground based radio telescopes, the VLBI interferometer with a ground-space arm will operate. The interferometer will have extraordinary angular resolution of a few microarcsecond (μas) at the shortest wavelength (1.35 cm). Since typical angular scales for gravitational microlensing are at the μas level for cosmological locations of sources and microlenses, in principle there is a chance to resolve microimages and (or) at least, detect astrometrical shift of bright point like images. In particular, gravitationally lensed systems, such as B1600+434, where in radio band a signature of microlensing is found, look suitable for direct observations of microlensing, since microlensing with the RadioAstron interferometer may be detected in the future (considering its high angular resolution and a relatively high sensitivity and assuming a ground support by the advanced radio telescopes).


Sign in / Sign up

Export Citation Format

Share Document