scholarly journals Archiving CCD/Electronic Astronomical Data

1992 ◽  
Vol 9 ◽  
pp. 713-714
Author(s):  
David Huenemoerder

The availability and advances in two-dimensional electronic detectors, in particular the charge-coupled-devices (CCDs), are a great asset to astronomical imaging and spectroscopy because of their sensitivity, dynamic range, and linearity. In some cases photographic plates still offer an advantage to imaging of large size, but the advent of large format CCDs may make a figure of merit, the area per exposure time, much more favorable for CCDs.

2021 ◽  
Author(s):  
Sapna Dinodiya ◽  
A. Bhargava

Abstract A pressure sensor based on two dimensional photonic crystal structure is presented. The structure considered for sensing is a lattice of air holes surrounded by semiconductor material. A waveguide with central microcavity is formed by filling air holes with semiconductor material. The sensing principle depends upon the shifting of central wavelength of peak towards higher wavelength region when the pressure is raised. The proposed pressure sensor can work in the range 0-5 GPa. Using this structure, two semiconductors, Si and GaAs, have been taken for analysis. It is found that shifting of resonance wavelength with pressure is more pronounced in GaAs than Si. In the dynamic range 0-5 GPa, sensitivity for sensor with Si is estimated as 1.674 nm/GPa while it is 17.00 nm/GPa for sensor with GaAs. The quality factor and figure of merit (FOM) is also found to be higher for GaAs sensor.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Mei Zhao ◽  
Sijie Yang ◽  
Kenan Zhang ◽  
Lijie Zhang ◽  
Ping Chen ◽  
...  

AbstractNonlayered two-dimensional (2D) materials have attracted increasing attention, due to novel physical properties, unique surface structure, and high compatibility with microfabrication technique. However, owing to the inherent strong covalent bonds, the direct synthesis of 2D planar structure from nonlayered materials, especially for the realization of large-size ultrathin 2D nonlayered materials, is still a huge challenge. Here, a general atomic substitution conversion strategy is proposed to synthesize large-size, ultrathin nonlayered 2D materials. Taking nonlayered CdS as a typical example, large-size ultrathin nonlayered CdS single-crystalline flakes are successfully achieved via a facile low-temperature chemical sulfurization method, where pre-grown layered CdI2 flakes are employed as the precursor via a simple hot plate assisted vertical vapor deposition method. The size and thickness of CdS flakes can be controlled by the CdI2 precursor. The growth mechanism is ascribed to the chemical substitution reaction from I to S atoms between CdI2 and CdS, which has been evidenced by experiments and theoretical calculations. The atomic substitution conversion strategy demonstrates that the existing 2D layered materials can serve as the precursor for difficult-to-synthesize nonlayered 2D materials, providing a bridge between layered and nonlayered materials, meanwhile realizing the fabrication of large-size ultrathin nonlayered 2D materials.


2017 ◽  
Vol 129 (30) ◽  
pp. 8892-8896 ◽  
Author(s):  
Hewei Zhao ◽  
Yujie Zhu ◽  
Fengshi Li ◽  
Rui Hao ◽  
Shaoxiong Wang ◽  
...  

2004 ◽  
Vol 17 (3) ◽  
pp. 354-357 ◽  
Author(s):  
T Manabe ◽  
M Sohma ◽  
I Yamaguchi ◽  
W Kondo ◽  
K Tsukada ◽  
...  

2D Materials ◽  
2018 ◽  
Vol 5 (3) ◽  
pp. 035033 ◽  
Author(s):  
Mianzeng Zhong ◽  
Ke Zhou ◽  
Zhongming Wei ◽  
Yan Li ◽  
Tao Li ◽  
...  

2018 ◽  
Vol 27 (09) ◽  
pp. 1850142 ◽  
Author(s):  
Mehdi Bandali ◽  
Omid Hashemipour

A two-dimensional digital-to-analog converter (DAC) structure compatible with dynamic element matching (DEM) methods is presented. Unlike the DACs using segmented structure for employing DEM, the new structure randomizes inter-segment error. This advantage is achieved because of the characteristics of the algorithm of two-dimensional decoding. The simulation results in 180[Formula: see text]nm CMOS technology, 319.72[Formula: see text]MHz signal frequency and 800[Formula: see text]MS/s sample rate for an 8-bit two-dimensional DAC utilizing the presented structure, shows 14.94[Formula: see text]dB spurious-free dynamic range (SFDR) improvement compared to the SFDR of the same DAC without employing the presented structure. Also, the IMD3 of the DAC employing the presented structure for [Formula: see text][Formula: see text]MHz and [Formula: see text][Formula: see text]MHz is 50.1[Formula: see text]dB.


2001 ◽  
Vol 55 (3) ◽  
pp. 318-330 ◽  
Author(s):  
Quentin S. Hanley

In analyzing the behavior of a Hadamard transform imaging spectroscopic system in an optical sectioning microscope, a previously undescribed masking effect was observed. During the process of characterizing this artifact, it was noted that while many masking errors have been reported previously in the literature, no attempt has been made to classify them or to systematically treat their effects in a variety of imaging and spectroscopy arrangements. Previous reports have documented echo artifacts in one-dimensional Hadamard mask systems based on sequences of length 2 n – 1, for which the echoes are well defined. Other valid cyclic S-sequences, such as those of prime length 4 m + 3 ≠ 2 n – 1, do not exhibit such behavior. Masking errors may be present with these sequences, but they do not appear as echoes. Recovered intensities are observed having both positive and negative magnitude distributed throughout the transform axis. These masking defects appear superficially to be “noise”, making associated errors more difficult to diagnose. Masking effects in two-dimensional systems have not been previously reported. In these, the relationship between the original image and resulting “echoes” can be quite complicated. This paper treats a variety of masking effects theoretically and presents simulations based on that treatment. Mask errors are divided into first- and second-order effects depending on whether the encoding passes through a mask once or twice. Symmetric, asymmetric, and static masking errors in one-dimensional Hadamard transform systems are treated in both first- and second-order arrangements. Where prior data exist, an attempt has been made to collect and categorize known mask-related artifacts and where appropriate provide additional documentation. Mask errors may be spatially varying or spatially invariant over the mask or within a given pixel. In systems which are spatially variant, proper sampling of the image or spectrum by the elements composing the mask is a prerequisite for successful correction of the data. Corrections applied to data from masks with spatially variant errors may cause artifacts to appear and, in some instances, complete correction may be impossible. The effects of photobleaching and mask spreading due to processes such as diffraction or aberrations in both one- and two-dimensional mask systems are investigated. Photobleaching is relatively easy to correct when an exponential decay model is applicable. In second-order systems, mask spreading gives rise to echoes or distortion even in perfectly implemented masks. Mask spreading can, in many cases, be corrected by analyzing the observed “echoes” and building a correction matrix or by using knowledge of the point, line, or other spreading function of the system. Finally, in masks of length 2 n – 1, a few simple rules greatly assist in diagnosing masking effects.


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 761-766 ◽  
Author(s):  
Renfu Zhuo ◽  
Shiyong Zuo ◽  
Weiwei Quan ◽  
De Yan ◽  
Baisong Geng ◽  
...  

We report a facile solvothermal method to synthesize hybrid materials SnS/RGO which are promising candidates for potential applications in photodetectors.


Author(s):  
E. A. Sivers ◽  
W. A. Ellingson ◽  
S. A. Snyder ◽  
D. A. Holloway

The small size and dynamic range of the best two-dimensional X-ray detectors are impediments to the use of three-dimensional X-ray computed tomography (3D-XRCT) for 100% inspection of large ceramic components. The most common industrial 3D-XRCT systems use a “rotate-only” geometry in which the X-ray source and the area detector remain stationary while the component placed between them is rotated through 360°. This configuration offers the highest inspection speed and the best utilization of X-ray dose, but requires that the component be small enough to fit within the X-ray/detector “cone.” Also, if the object is very dense, the ratio of an unattenuated X-ray signal to that through the longest path in the component may exceed the dynamic range of the detector. To some extent, both of these disadvantages can be overcome by using “Multiscan CT,” i.e., scanning small overlapping regions of a large component separately while maximizing the X-ray dose to each. The overlapping scans can then be combined seamlessly into a single scan with optimal contrast.


Sign in / Sign up

Export Citation Format

Share Document