Hidden Star Formation: The Ultraviolet Perspective

2002 ◽  
Vol 12 ◽  
pp. 489-492 ◽  
Author(s):  
G.R. Meurer ◽  
T.M. Heckman ◽  
M. Seibert ◽  
J. Goldader ◽  
D. Calzetti ◽  
...  

AbstractMany recent estimates of the star formation rate density at high redshift rely on rest-frame ultraviolet (UV) data. These are highly sensitive to dust absorption. Applying a correlation between the far-infrared (FIR) to UV flux ratio and UV color found in local starbursts to galaxy samples out toz∼ 3, one can account for most of the FIR background. However, the correlation is based on a sample that does not include the most extreme starbursts, Ultra Luminous Infrared Galaxies (ULIGs). Our new UV images of ULIGs show that their FIR fluxes are underpredicted by this correlation by factors ranging from 7 to 70. We discuss how ULIGs compare to the various types of high-zgalaxies: sub-mm sources, Lyman Break Galaxies, and Extremely Red Objects.

Author(s):  
Maria Werhahn ◽  
Christoph Pfrommer ◽  
Philipp Girichidis

Abstract An extinction-free estimator of the star-formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR) and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magneto-hydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code Arepo, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star-light and cosmic microwave background (CMB) photons while less energy is converted to synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free–free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free–free absorption explains the observed low-frequency flattening towards the central regions of starbursts.


2018 ◽  
Vol 619 ◽  
pp. A15 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
D. Schaerer ◽  
J. Richard ◽  
K. Nakajima ◽  
...  

Observations have shown that massive star-forming clumps are present in the internal structure of high-redshift galaxies. One way to study these clumps in detail with a higher spatial resolution is by exploiting the power of strong gravitational lensing which stretches images on the sky. In this work, we present an analysis of the clumpy galaxy A68-HLS115 at z = 1.5858, located behind the cluster Abell 68, but strongly lensed by a cluster galaxy member. Resolved observations with SINFONI/VLT in the near-infrared (NIR) show Hα, Hβ, [NII], and [OIII] emission lines. Combined with images covering the B band to the far-infrared (FIR) and CO(2–1) observations, this makes this galaxy one of the only sources for which such multi-band observations are available and for which it is possible to study the properties of resolved star-forming clumps and to perform a detailed analysis of the integrated properties, kinematics, and metallicity. We obtain a stability of υrot/σ0 = 2.73 by modeling the kinematics, which means that the galaxy is dominated by rotation, but this ratio also indicates that the disk is marginally stable. We find a high intrinsic velocity dispersion of 80 ± 10 km s−1 that could be explained by the high gas fraction of fgas = 0.75 ± 0.15 observed in this galaxy. This high fgas and the observed sSFR of 3.12 Gyr−1 suggest that the disk turbulence and instabilities are mostly regulated by incoming gas (available gas reservoir for star formation). The direct measure of the Toomre stability criterion of Qcrit = 0.70 could also indicate the presence of a quasi-stable thick disk. Finally, we identify three clumps in the Hα map which have similar velocity dispersions, metallicities, and seem to be embedded in the rotating disk. These three clumps contribute together to ∼40% on the SFRHα of the galaxy and show a star formation rate density about ∼100 times higher than HII regions in the local Universe.


2011 ◽  
Vol 7 (S279) ◽  
pp. 224-231
Author(s):  
Andrew J. Bunker

AbstractThere has been great progress in recent years in discovering star forming galaxies at high redshifts (z > 5), close to the epoch of reionization of the intergalactic medium (IGM). The WFC3 and ACS cameras on the Hubble Space Telescope have enabled Lyman break galaxies to be robustly identified, but the UV luminosity function and star formation rate density of this population at z = 6 − 8 seems to be much lower than at z = 2 − 4. High escape fractions and a large contribution from faint galaxies below our current detection limits would be required for star-forming galaxies to reionize the Universe. We have also found that these galaxies have blue rest-frame UV colours, which might indicate lower dust extinction at z > 5. There has been some spectroscopic confirmation of these Lyman break galaxies through Lyman-α emission, but the fraction of galaxies where we see this line drops at z > 7, perhaps due to the onset of the Gunn-Peterson effect (where the IGM is opaque to Lyman-α).


2009 ◽  
Vol 5 (H15) ◽  
pp. 423-424
Author(s):  
K. Menéndez-Delmestre ◽  
A. W. Blain ◽  
I. Smail ◽  
D. M. Alexander ◽  
S. C. Chapman ◽  
...  

AbstractUltra-luminous infrared galaxies (ULIRGs; L > 1012 L⊙) are quite rare in the local universe, but seem to dominate the co-moving energy density at z > 2. Many are optically-faint, dust-obscured galaxies that have been identified only relatively recently by the detection of their thermal dust emission redshifted into the sub-mm wavelengths. These submm galaxies (SMGs) have been shown to be a massive objects (M* ~ 1011 M⊙) undergoing intense star-formation(SFRs ~ 102 − 103 M⊙ yr−1) and the likely progenitors of massive ellipticals today. However, the AGN contribution to the far-IR luminosity had for years remained a caveat to these results. We used the Spitzer Infrared Spectrograph (IRS) to investigate the energetics of 24 radio-identified and spectroscopically-confirmed SMGs in the redshift range of 0.6 < z < 3.2. We find emission from Polycyclic Aromatic Hydrocarbons (PAHs) – which are associated with intense star-formation activity – in >80% of our sample and find that the median mid-IR spectrum is well described by a starburst component with an additional power-law continuum representing < 32% AGN contribution to the far-IR luminosity. We also find evidence for a more extended distribution of warm dust in SMGs compared to the more compact nuclear bursts in local ULIRGs and starbursts, suggesting that SMGs are not simple high-redshift analogs of local ULIRGs or nuclear starbursts, but have star formation which resembles that seen in less-extreme star-forming environments at z ~ 0.


2006 ◽  
Vol 450 (1) ◽  
pp. 69-76 ◽  
Author(s):  
D. Burgarella ◽  
P. G. Pérez-González ◽  
K. D. Tyler ◽  
G. H. Rieke ◽  
V. Buat ◽  
...  

2020 ◽  
Vol 499 (4) ◽  
pp. 5241-5256
Author(s):  
Cheng Cheng ◽  
Edo Ibar ◽  
Ian Smail ◽  
Juan Molina ◽  
David Sobral ◽  
...  

ABSTRACT We present Atacama Large Millimeter/Submillimeter Array (ALMA) continuum observations of a sample of nine star-forming galaxies at redshifts 1.47 and 2.23 selected from the High-z Emission Line Survey (HiZELS). Four galaxies in our sample are detected at high significance by ALMA at a resolution of 0${_{.}^{\prime\prime}}$25 at rest-frame 355 μm. Together with the previously observed H α emission, from adaptive optics-assisted integral-field-unit spectroscopy (∼0${_{.}^{\prime\prime}}$15 resolution), and F606W and F140W imaging from the Hubble Space Telescope (∼0${_{.}^{\prime\prime}}$2 resolution), we study the star formation activity, stellar and dust mass in these high-redshift galaxies at ∼kpc-scale resolution. We find that ALMA detection rates are higher for more massive galaxies (M* &gt; 1010.5 M⊙) and higher [N ii]/H α ratios (&gt;0.25, a proxy for gas-phase metallicity). The dust extends out to a radius of 8 kpc, with a smooth structure, even for those galaxies presenting clumpy H α morphologies. The half-light radii (Rdust) derived for the detected galaxies are of the order ∼4.5 kpc, more than twice the size of submillimetre-selected galaxies at a similar redshift. Our global star formation rate estimates – from far-infrared and extinction-corrected H α luminosities – are in good agreement. However, the different morphologies of the different phases of the interstellar medium suggest complex extinction properties of the high-redshift normal galaxies.


2020 ◽  
Vol 15 (S359) ◽  
pp. 462-463
Author(s):  
Yiqing Song ◽  
Sean T. Linden ◽  
Aaron S. Evans ◽  
Loreto Barcos-Muñoz ◽  
Eric J. Murphy

AbstractNuclear rings are excellent laboratories to study star formation (SF) under extreme conditions. We compiled a sample of 9 galaxies that exhibit bright nuclear rings at 3-33 GHz radio continuum observed with the Jansky Very Large Array, of which 5 are normal star-forming galaxies and 4 are Luminous Infrared Galaxies (LIRGs). Using high frequency radio continuum as an extinction-free tracer of SF, we estimated the size and star formation rate of each nuclear ring and a total of 37 individual circumnuclear star-forming regions. Our results show that majority of the SF in the sample LIRGs take place in their nuclear rings, and circumnuclear SF in local LIRGs are much more spatially concentrated compared to those in the local normal galaxies and previously studied nuclear and extra-nuclear SF in normal galaxies at both low and high redshifts.


2020 ◽  
Vol 639 ◽  
pp. L13
Author(s):  
N. P. H. Nesvadba ◽  
G. V. Bicknell ◽  
D. Mukherjee ◽  
A. Y. Wagner

We present new, spatially resolved [CI]1–0, [CI]2–1, CO(7–6), and dust continuum observations of 4C 41.17 at z = 3.8. This is one of the best-studied radio galaxies in this epoch and is arguably the best candidate of jet-triggered star formation at high redshift currently known in the literature. 4C 41.17 shows a narrow ridge of dust continuum extending over 15 kpc near the radio jet axis. Line emission is found within the galaxy in the region with signatures of positive feedback. Using the [CI]1–0 line as a molecular gas tracer, and multifrequency observations of the far-infrared dust heated by star formation, we find a total gas mass of 7.6 × 1010 M⊙, which is somewhat greater than that previously found from CO(4–3). The gas mass surface density of 103 M⊙ yr−1 pc−2 and the star formation rate surface density of 10 M⊙ yr−1 kpc−2 were derived over the 12 kpc × 8 kpc area, where signatures of positive feedback have previously been found. These densities are comparable to those in other populations of massive, dusty star-forming galaxies in this redshift range, suggesting that the jet does not currently enhance the efficiency with which stars form from the gas. This is consistent with expectations from simulations, whereby radio jets may facilitate the onset of star formation in galaxies without boosting its efficiency over longer timescales, in particular after the jet has broken out of the interstellar medium, as is the case in 4C 41.17.


2012 ◽  
Vol 8 (S295) ◽  
pp. 82-85
Author(s):  
Guanwen Fang ◽  
Xu Kong ◽  
Jia-Sheng Huang ◽  
Zhongyang Ma

AbstractWe present a result of IRS spectroscopy of 14 Ultra-Luminous Infrared Galaxies (ULIRGs) in the Extended Groth Strip region. These galaxies are massive and have very high star formation rate. Four objects of this sample are detected in the HST/WFC3 near-infrared imaging. They show very diversified rest-frame optical morphologies, including string-like, extended/diffused, and even spiral with a possible bulge, implying different formation processes for these galaxies. We also search for signatures of active galactic nucleus (AGN) in our sample in the X-ray, mid-infrared and radio bands. This sample is dominated by objects with intensive star formation, only 14–29% of them have AGN activities.


Sign in / Sign up

Export Citation Format

Share Document