scholarly journals Magnetorotational Mechanism of Supernova Explosions - Results of 2D Simulations

1998 ◽  
Vol 11 (1) ◽  
pp. 376-376
Author(s):  
S.G. Moiseenko

Results of 2D numerical simulation of the magneto rotational mechanism of a supernova explosion are presented. Simulation has been done for the real equations of state and neutrino energy losses have been taken into account. Simulation has been done on the basis of an Implicit Lagrangian scheme on atriangular grid with grid reconstructuring. It is shown that, due to differential rotation of the star, a toroidal component of the magnetic field appears and grows with time. Rotational momentum transfers outwards as the toroidal component grows with time. With the evolution of the process, part of the envelope of the star is ejected. The amounts of the thrown-off mass and energy are estimated. The results of the simulation could be used as a possible explanation for the supernova explosion picture.

2011 ◽  
Vol 7 (S279) ◽  
pp. 357-358
Author(s):  
Sergey G. Moiseenko ◽  
Gennady S. Bisnovatyi-Kogan

AbstractWe present results of the simulation of a magneto-rotational supernova explosion. We show that, due to the differential rotation of the collapsing iron core, the magnetic field increases with time. The magnetic field transfers angular momentum and a MHD shock wave forms. This shock wave produces the supernova explosion. The explosion energy computed in our simulations is 0.5-2.5 ċ 1051erg. We used two different equations of state for the simulations. The results are rather similar.


2003 ◽  
Vol 214 ◽  
pp. 117-120
Author(s):  
N. V. Ardeljan ◽  
G. S. Bisnovatyi-Kogan ◽  
S. G. Moiseenko

We made simulations of the collapse of the rotating protostellar cloud. Differential rotation leads to the amplification of the toroidal component of the magnetic field and subsequent ejection of the matter due to the magnetorotational mechanism.Our results show that at different initial configurations of the magnetic field formation of qualitatively different types of explosion takes place. Magnetic field of the dipole type produces a jet-like explosion. Quadrupole-like magnetic field produces supernova explosion whith ejection presumably near equatorial plane. Quantitative estimations of the ejected mass and energy are given.We have done simulation of the collapse of the white dwarf and formation of a differentially rotating neutron star. After the collapse stage the rotating neutron star was formed. The rotation of the neutron star is strongly differential. The presence of the magnetic field (even the weak one) could produce magnetorotational supernova explosion.For the simulations we have used 2D numerical scheme, based on the specially developed numerical method (conservative, implicit, triangular grid, Lagrangian, grid reconstruction).


2018 ◽  
Vol 617 ◽  
pp. A90 ◽  
Author(s):  
Hao Liu

Context. Currently, detection of the primordial gravitational waves using the B-mode of cosmic microwave background (CMB) is primarily limited by our knowledge of the polarized microwave foreground emissions. Improvements of the foreground analysis are therefore necessary. As we revealed in an earlier paper, the E-mode and B-mode of the polarized foreground have noticeably different properties, both in morphology and frequency spectrum, suggesting that they arise from different physicalprocesses, and need to be studied separately. Aims. I study the polarized emission from Galactic loops, especially Loop I, and mainly focus on the following questions: Does the polarized loop emission contribute predominantly to the E-mode or B-mode? In which frequency bands and in which sky regions can the polarized loop emission be identified? Methods. Based on a well known result concerning the magnetic field alignment in supernova explosions, a theoretical expectation is established that the loop polarizations should be predominantly E-mode. In particular, the expected polarization angles of Loop I are compared with those from the real microwave band data of WMAP and Planck. Results and conclusions. The comparison between model and data shows remarkable consistency between the data and our expectations at all bands and for a large area of the sky. This result suggests that the polarized emission of Galactic Loop I is a major polarized component in all microwave bands from 23 to 353 GHz, and a considerable part of the polarized foreground likely originates from a local bubble associated with Loop I, instead of the far more distant Galactic emission. This result also provides a possible way to explain the E-to-B excess problem by contribution of the loops. Finally, this work may also provide the first geometrical evidence that the Earth was hit by a supernova explosion.


Universe ◽  
2020 ◽  
Vol 6 (5) ◽  
pp. 63
Author(s):  
Hui Wang ◽  
Zhi-Fu Gao ◽  
Huan-Yu Jia ◽  
Na Wang ◽  
Xiang-Dong Li

Young pulsars are thought to be highly magnetized neutron stars (NSs). The crustal magnetic field of a NS usually decays at different timescales in the forms of Hall drift and Ohmic dissipation. The magnetization parameter ω B τ is defined as the ratio of the Ohmic timescale τ O h m to the Hall drift timescale τ H a l l . During the first several million years, the inner temperature of the newly born neutron star cools from T = 10 9 K to T = 1.0 × 10 8 K, and the crustal conductivity increases by three orders of magnitude. In this work, we adopt a unified equations of state for cold non-accreting neutron stars with the Hartree–Fock–Bogoliubov method, developed by Pearson et al. (2018), and choose two fiducial dipole magnetic fields of B = 1.0 × 10 13 G and B = 1.0 × 10 14 G, four different temperatures, T, and two different impurity concentration parameters, Q, and then calculate the conductivity of the inner crust of NSs and give a general expression of magnetization parameter for young pulsars: ω B τ ≃ ( 1 − 50 ) B 0 / ( 10 13 G) by using numerical simulations. It was found when B ≤ 10 15 G, due to the quantum effects, the conductivity increases slightly with the increase in the magnetic field, the enhanced magnetic field has a small effect on the matter in the low-density regions of the crust, and almost has no influence the matter in the high-density regions. Then, we apply the general expression of the magnetization parameter to the high braking-index pulsar PSR J1640-4631. By combining the observed arrival time parameters of PSR J1640-4631 with the magnetic induction equation, we estimated the initial rotation period P 0 , the initial dipole magnetic field B 0 , the Ohm dissipation timescale τ O h m and Hall drift timescale τ H a l l . We model the magnetic field evolution and the braking-index evolution of the pulsar and compare the results with its observations. It is expected that the results of this paper can be applied to more young pulsars.


2007 ◽  
Vol 22 (19) ◽  
pp. 3305-3315 ◽  
Author(s):  
JING-JING LIU ◽  
ZHI-QUAN LUO ◽  
HONG-LIN LIU ◽  
XIANG-JUN LAI

The neutrino energy loss rates on iron group nuclei by electron capture are calculated in a strong magnetic field at the crusts of Neutron stars. The results show that the magnetic field has only a slight effect on the neutrino energy loss rates in a range of 108–1013 G on surfaces of the most neutron stars. Whereas for some magnetars which range of the magnetic field is 1013–1018 G, the neutrino energy loss rates of the most iron group nuclei would be debased greatly and may be even decreased for 4 orders of magnitude by the strong magnetic field.


1971 ◽  
Vol 46 ◽  
pp. 389-391
Author(s):  
L. Woltjer

The magnetic field and the relativistic electrons in the Crab Nebula cannot have originated at the time of the supernova explosion. The energy density in the magnetic field is so large that it must have been generated using the energy supply in the pulsar. The energies of the electrons are so high, and their lifetimes correspondingly are so short, that they must have been accelerated, again using the pulsar energy. The efficiency of these processes must be high, but there is an adequate energy supply.


1998 ◽  
Vol 60 (2) ◽  
pp. 229-241 ◽  
Author(s):  
P. K. SHARMA ◽  
R. K. CHHAJLANI

The Kelvin–Helmholtz (K–H) instability of two fluids of plasma streaming in opposite directions with the same velocity and in the presence of an external magnetic field is investigated. The usual magnetohydrodynamic equations with anisotropic pressure are considered. In the present problem, the two pressures parallel and perpendicular to the direction of the magnetic field are defined by polytropic pressure laws. The generalized pressure relations are used, and two equations of state for two pressures are assumed. The equations are linearized, and initially two different flow velocities are taken for the system. The flow is assumed to be in the direction perpendicular to the magnetic field. The problem is solved and a dispersion relation is obtained. From the dispersion relation, the K–H instability condition is obtained. It is found that the instability condition depends upon the polytropic indices of the pressure relations. The condition of instability is further obtained for MHD and Chew–Goldberger–Low systems. It is also found that the growth rate of the instability depends upon various polytropic indices.


2021 ◽  
Vol 9 ◽  
Author(s):  
Kazuma Emoto ◽  
Kazunori Takahashi ◽  
Yoshinori Takao

Energy losses in a magnetic nozzle radiofrequency plasma thruster are investigated to improve the thruster efficiency and are calculated from particle energy losses in fully kinetic simulations. The simulations calculate particle energy fluxes with a vector resolution including the plasma energy lost to the dielectric wall, the plasma beam energy, and the divergent plasma energy in addition to collisional energy losses. As a result, distributions of energy losses in the thruster and the ratios of the energy losses to the input power are obtained. The simulation results show that the plasma energy lost to the dielectric is dramatically suppressed by increasing the magnetic field strength, and the ion beam energy increases instead. In addition, the divergent ion energy and collisional energy losses account for approximately 4%–12% and 30%–40%, respectively, regardless of the magnetic field strength.


2018 ◽  
Vol 27 (02) ◽  
pp. 1850016 ◽  
Author(s):  
D. Alvear Terrero ◽  
D. Manreza Paret ◽  
A. Pérez Martínez

In this work we use Hartle’s formalism to study the effects of rotation in the structure of magnetized white dwarfs within the framework of general relativity. We describe the inner matter by means of an equation of state for electrons under the action of a constant magnetic field, which introduces an anisotropy in the pressures. Solutions correspond to typical densities of white dwarfs and values of magnetic field below [Formula: see text][Formula: see text]G considering perpendicular and parallel pressures independently, as if associated to two different equations of state. Rotation effects obtained account for an increase of the maximum mass for both magnetized and nonmagnetized stable configurations, up to about [Formula: see text]. Further effects studied include the deformation of the stars, which become oblate spheroids and the solutions for other quantities of interest, such as the moment of inertia, quadrupolar momentum and eccentricity. In all cases, rotation effects are dominant with respect to those of the magnetic field.


1987 ◽  
Vol 01 (01n02) ◽  
pp. 27-37 ◽  
Author(s):  
M.V. FEIGEL’MAN ◽  
L.B. IOFFE ◽  
A.I. LARKIN ◽  
V.M. VINOKUR

The phase transition into a spin glass-like state is predicted for the system of superconductive wires connected by Josephson links and placed into the magnetic field. History-dependent equations of state for T<Tc are derived and diamagnetic response to the variation of the magnetic field is predicted. The experiments that can solve the discrepancy between the analytical theory and the numerical simulations on the existence of the phase transition in the vector spin glasses are discussed.


Sign in / Sign up

Export Citation Format

Share Document