Bugscope: Online K–12 Microscopy Outreach

2011 ◽  
Vol 19 (2) ◽  
pp. 46-50 ◽  
Author(s):  
Scott Robinson ◽  
Chas Conway ◽  
Cate Wallace ◽  
Ann M. Ray ◽  
Umesh Thakkar

Bugscope is a free online microscopy outreach program that offers K–12 classrooms anywhere in the world the ability to remotely operate a high-resolution scanning electron microscope, collect images of insects and other similar arthropods, and chat simultaneously with a team of scientists. It was conceived and implemented in the late 1990s when K–12 schools were beginning to gain broadband Internet access, many as a result of the Telecommunications Act of 1996. One of several projects that took advantage of this opportunity to use the Internet to bring the laboratory into the classroom, Bugscope began as an NSF grant to purchase a field-emission scanning electron microscope and develop sophisticated client and server software to control it via a standard web browser. Inspired by the success of and lessons learned from the Chickscope remote magnetic resonance imaging project and from having successfully established remote web-based control of a transmission electron microscope, Clint Potter and Bridget Carragher created the Bugscope project with the goal of developing a remote microscopy educational outreach project that would be sustainable over the long term. This goal led to two significant design decisions. First, the software involved in setting up and running the live outreach sessions was purpose-built to ensure that only one staff member, if necessary, would be required at the instrument (as opposed to Chickscope, which required staff at the remote location as well as at the instrument). Second, students from a local high school would be employed as a renewable resource to help with pre-session sample preparation and to participate in live chat, answering questions from the remote classrooms. Although we now operate with permanent staff at the instrument, these efficiencies in the original concept/design have allowed Bugscope to operate continuously since March 1999, long after the original funding was exhausted.

2021 ◽  
Vol 48 (3) ◽  
Author(s):  
Courtney Onstad

Geology Outreach at the University of Saskatchewan was initiated during the 2018/19 academic year as a free and informal education opportunity for K–12 educators and their students in Saskatchewan. The program was 100% volunteer-run by undergraduate and graduate students in the Department of Geological Sciences at the University of Saskatchewan. We estimate reaching more than 1000 students in Saskatoon and surrounding areas following two years of outreach offerings. Hands-on activities offered included ‘Rocks and Minerals’, ‘Fossils’, ‘Meteorite Impacts’ and ‘Volcanoes’ and also involved a tour of the Museum of Natural Sciences when completed on campus. The overall intent of these activities was to foster excitement about the Earth Sciences. Typically, Educators who booked our program taught grades 4–7, where the Earth Sciences are strongly represented in Saskatchewan’s science curriculum. Most outreach offerings occurred on the University of Saskatchewan campus, but some were offered remotely at elementary schools and various Girl Guides of Canada events. During the 2019/20 academic year, we booked every outreach event planned for that year within two days and had a waiting list of more than 30 teachers across the province. The demand for geoscience outreach in Saskatchewan is high, and we hope to continue providing engaging, relevant, and fun educational outreach opportunities. University departments across Canada should allocate funds for community and school outreach initiatives and hire science communicators to oversee programs such as this.


Author(s):  
R. E. Ferrell ◽  
G. G. Paulson

The pore spaces in sandstones are the result of the original depositional fabric and the degree of post-depositional alteration that the rock has experienced. The largest pore volumes are present in coarse-grained, well-sorted materials with high sphericity. The chief mechanisms which alter the shape and size of the pores are precipitation of cementing agents and the dissolution of soluble components. Each process may operate alone or in combination with the other, or there may be several generations of cementation and solution.The scanning electron microscope has ‘been used in this study to reveal the morphology of the pore spaces in a variety of moderate porosity, orthoquartzites.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
K. Shibatomi ◽  
T. Yamanoto ◽  
H. Koike

In the observation of a thick specimen by means of a transmission electron microscope, the intensity of electrons passing through the objective lens aperture is greatly reduced. So that the image is almost invisible. In addition to this fact, it have been reported that a chromatic aberration causes the deterioration of the image contrast rather than that of the resolution. The scanning electron microscope is, however, capable of electrically amplifying the signal of the decreasing intensity, and also free from a chromatic aberration so that the deterioration of the image contrast due to the aberration can be prevented. The electrical improvement of the image quality can be carried out by using the fascionating features of the SEM, that is, the amplification of a weak in-put signal forming the image and the descriminating action of the heigh level signal of the background. This paper reports some of the experimental results about the thickness dependence of the observability and quality of the image in the case of the transmission SEM.


Author(s):  
S. Takashima ◽  
H. Hashimoto ◽  
S. Kimoto

The resolution of a conventional transmission electron microscope (TEM) deteriorates as the specimen thickness increases, because chromatic aberration of the objective lens is caused by the energy loss of electrons). In the case of a scanning electron microscope (SEM), chromatic aberration does not exist as the restrictive factor for the resolution of the transmitted electron image, for the SEM has no imageforming lens. It is not sure, however, that the equal resolution to the probe diameter can be obtained in the case of a thick specimen. To study the relation between the specimen thickness and the resolution of the trans-mitted electron image obtained by the SEM, the following experiment was carried out.


Author(s):  
R. F. Schneidmiller ◽  
W. F. Thrower ◽  
C. Ang

Solid state materials in the form of thin films have found increasing structural and electronic applications. Among the multitude of thin film deposition techniques, the radio frequency induced plasma sputtering has gained considerable utilization in recent years through advances in equipment design and process improvement, as well as the discovery of the versatility of the process to control film properties. In our laboratory we have used the scanning electron microscope extensively in the direct and indirect characterization of sputtered films for correlation with their physical and electrical properties.Scanning electron microscopy is a powerful tool for the examination of surfaces of solids and for the failure analysis of structural components and microelectronic devices.


Author(s):  
S. Saito ◽  
H. Todokoro ◽  
S. Nomura ◽  
T. Komoda

Field emission scanning electron microscope (FESEM) features extremely high resolution images, and offers many valuable information. But, for a specimen which gives low contrast images, lateral stripes appear in images. These stripes are resulted from signal fluctuations caused by probe current noises. In order to obtain good images without stripes, the fluctuations should be less than 1%, especially for low contrast images. For this purpose, the authors realized a noise compensator, and applied this to the FESEM.Fig. 1 shows an outline of FESEM equipped with a noise compensator. Two apertures are provided gust under the field emission gun.


Author(s):  
Emil Bernstein

An interesting method for examining structures in g. pig skin has been developed. By modifying an existing technique for splitting skin into its two main components—epidermis and dermis—we can in effect create new surfaces which can be examined with the scanning electron microscope (SEM). Although this method is not offered as a complete substitute for sectioning, it provides the investigator with a means for examining certain structures such as hair follicles and glands intact. The great depth of field of the SEM complements the technique so that a very “realistic” picture of the organ is obtained.


Author(s):  
C.V.L. Powell

The overall fine structure of the eye in Placopecten is similar to that of other scallops. The optic tentacle consists of an outer columnar epithelium which is modified into a pigmented iris and a cornea (Fig. 1). This capsule encloses the cellular lens, retina, reflecting argentea and the pigmented tapetum. The retina is divided into two parts (Fig. 2). The distal retina functions in the detection of movement and the proximal retina monitors environmental light intensity. The purpose of the present study is to describe the ultrastructure of the retina as a preliminary observation on eye development. This is also the first known presentation of scanning electron microscope studies of the eye of the scallop.


Author(s):  
M. Osumi ◽  
N. Yamada ◽  
T. Nagatani

Even though many early workers had suggested the use of lower voltages to increase topographic contrast and to reduce specimen charging and beam damage, we did not usually operate in the conventional scanning electron microscope at low voltage because of the poor resolution, especially of bioligical specimens. However, the development of the “in-lens” field emission scanning electron microscope (FESEM) has led to marked inprovement in resolution, especially in the range of 1-5 kV, within the past year. The probe size has been cumulated to be 0.7nm in diameter at 30kV and about 3nm at 1kV. We have been trying to develop techniques to use this in-lens FESEM at low voltage (LVSEM) for direct observation of totally uncoated biological specimens and have developed the LVSEM method for the biological field.


Sign in / Sign up

Export Citation Format

Share Document