Dynamic Responses of Beams with a Flexible Support Under a Constant Speed Moving Load

2008 ◽  
Vol 24 (2) ◽  
pp. 195-204 ◽  
Author(s):  
H.-P. Lin

ABSTRACTThis paper deals with the linear dynamic responses of beams with a flexible support under a moving load with a constant speed. The entire system is modeled as a two-span beam and each span of the continuous beams is assumed to obey the Euler-Bernoulli beam theory. Considering the compatibility requirements on the flexible constraint, the relationships between two segments can be obtained. By using a transfer matrix method, the characteristic equation of the entire system can then be determined. The forced responses of the system under a moving load can then be obtained through modal expansion theory. Some numerical results are presented to the effects of support stiffness and the different speeds of the moving load.

2012 ◽  
Vol 29 (1) ◽  
pp. 143-155 ◽  
Author(s):  
H.- P. Lin ◽  
D. Yang

AbstractThis paper deals with the transverse free vibrations of a system in which two beams are coupled with a spring-mass device. The dynamics of this system are coupled through the motion of the mass. The entire system is modeled as two two-span beams and each span of the continuous beams is assumed to obey the Euler-Bernoulli beam theory. Considering the compatibility requirements across each spring con-nection position, the eigensolutions (natural frequencies and mode shapes) of this system can be obtained for different boundary conditions. Some numerical results and experimental validations are presented to demonstrate the method proposed in this article.


2020 ◽  
Vol 4 (2) ◽  
pp. 1-7
Author(s):  
Fatai Hammed ◽  
M. A. Usman ◽  
S. A. Onitilo ◽  
F. A. Alade ◽  
K. A. Omoteso

In this study, the response of two homogeneous parallel beams with two-parameter Pasternak elastic foundation subjected to a constant uniform partially distributed moving force is considered. On the basis of Euler-Bernoulli beam theory, the fourth order partial differential equations of motion describing the behavior of the beams when subjected to a moving force were formulated. In order to solve the resulting initial-boundary value problem, finite Fourier sine integral technique and differential transform scheme were employed to obtain the analytical solution. The dynamic responses of the two beams obtained was investigated under moving force conditions using MATLAB. The effects of speed of the moving force, layer parameters such as stiffness (K_0) and shear modulus (G_0 ) have been conducted for the moving force. Various values of speed of the moving load, stiffness parameters and shear modulus were considered. The results obtained indicates that response amplitudes of both the upper and lower beams increases with increase in the speed of the moving load. Increasing the stiffness parameter is observed to cause a decrease in the response amplitudes of the beams. The response amplitudes decreases with increase in the shear modulus of the linear elastic layer.


2018 ◽  
Vol 18 (09) ◽  
pp. 1850112 ◽  
Author(s):  
Wachirawit Songsuwan ◽  
Monsak Pimsarn ◽  
Nuttawit Wattanasakulpong

This paper investigates the free vibration and dynamic response of functionally graded sandwich beams resting on an elastic foundation under the action of a moving harmonic load. The governing equation of motion of the beam, which includes the effects of shear deformation and rotary inertia based on the Timoshenko beam theory, is derived from Lagrange’s equations. The Ritz and Newmark methods are employed to solve the equation of motion for the free and forced vibration responses of the beam with different boundary conditions. The results are presented in both tabular and graphical forms to show the effects of layer thickness ratios, boundary conditions, length to height ratios, spring constants, etc. on natural frequencies and dynamic deflections of the beam. It was found that increasing the spring constant of the elastic foundation leads to considerable increase in natural frequencies of the beam; while the same is not true for the dynamic deflection. Additionally, very large dynamic deflection occurs for the beam in resonance under the harmonic moving load.


2017 ◽  
Vol 873 ◽  
pp. 208-211
Author(s):  
Zhang Jun ◽  
Ming Kang Gou ◽  
Chuan Liang

The effect of bridge vibrationinduced bylive loads such as vehicles and pedestrians is an important factor of bridge fatigue damage. It takes much labor and material resource to perform vibration experiments on bridges subjected by real moving loads in field. In order to carry out laboratory experiments on bridges subjected by moving loads, a fixed load with harmonic vibration simulates a moving load on bridge in the beam theory. A simply supported bridge is considered in the present study. The dynamic responses of bridge under different loads are established by the analytic method. Amplitude and frequency of the simulated load are generated on the principle of equal displacements due to both a moving load and a fixed harmonic load impacting on a simply supported beam. Comparisons of numerical results of two types of load on the same beam indicate that the harmonic load can simulate a moving load effectively. It is possible that the field test on bridge can be carried out indoors.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qingrong Chen ◽  
Wenming Cheng ◽  
Lingchong Gao ◽  
Run Du

In this paper, a novel moving load model for 2D crane systems of which the trolley has two axles is proposed. Based on this model, the dynamics of a 2D gantry crane, which is modelled as a simply supported Euler–Bernoulli beam carrying a two-axle trolley from which a single-pendulum payload is suspended, is studied. The proposed model was verified by comparing with two models in existing papers and can be considered as an extended version of comparative models. Then, the effect of the trolley’s axle base on the dynamic responses of the beam is studied. It can be observed that increasing the length of trolley’s axle base will decrease the deflection of the beam, and a larger initial swing angle will cause a larger deflection of the beam without controlling the swing of the payload.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Yan-Shin Shih ◽  
Chen-Yuan Chung

This paper investigates the dynamic response of the cracked and flexible connecting rod in a slider-crank mechanism. Using Euler–Bernoulli beam theory to model the connecting rod without a crack, the governing equation and boundary conditions of the rod's transverse vibration are derived through Hamilton's principle. The moving boundary constraint of the joint between the connecting rod and the slider is considered. After transforming variables and applying the Galerkin method, the governing equation without a crack is reduced to a time-dependent differential equation. After this, the stiffness without a crack is replaced by the stiffness with a crack in the equation. Then, the Runge–Kutta numerical method is applied to solve the transient amplitude of the cracked connecting rod. In addition, the breathing crack model is applied to discuss the behavior of vibration. The influence of cracks with different crack depths on natural frequencies and amplitudes is also discussed. The results of the proposed method agree with the experimental and numerical results available in the literature.


2021 ◽  
Author(s):  
Jeudy Kean ◽  
Nathalie Raveu ◽  
Hamza Kaouach ◽  
Kosorl Thourn ◽  
Sokchenda Sreng

Author(s):  
Reza Ebrahimi

The existence of chaos in the lateral vibration of the carbon nanotube (CNT) can contribute to source of instability and inaccuracy within the nano mechanical systems. So, chaotic vibrations of a simply supported CNT which is subjected to a traversing harmonic force are studied in this paper. The model of the system is formulated by using nonlocal Euler–Bernoulli beam theory. The equation of motion is solved using the Rung–Kutta method. The effects of the nonlocal parameter, velocity and amplitude of the traversing harmonic force on the nonlinear dynamic response of the system are analyzed by the bifurcation diagrams, phase plane portrait, power spectra analysis, Poincaré map and the maximum Lyapunov exponent. The results indicate that the nonlocal parameter, velocity and amplitude of the traversing harmonic force have considerable effects on the bifurcation behavior and can be used as effective control parameters for avoiding chaos.


Author(s):  
Jiahao Zheng ◽  
Hongyuan Qiu ◽  
Jianming Yang ◽  
Stephen Butt

Based on linear damage accumulation law, this paper investigates the fatigue problem of drill-strings in time domain. Rainflow algorithms are developed to count the stress cycles. The stress within the drill-string is calculated with finite element models which is developed using Euler-Bernoulli beam theory. Both deterministic and random excitations to the drill-string system are taken into account. With this model, the stress time history in random nature at any location of the drill-string can be obtained by solving the random dynamic model of the drill-string. Then the random time history is analyzed using rainflow counting method. The fatigue life of the drill-string under both deterministic and random excitations can therefore be predicted.


Author(s):  
Wei-Jiun Su ◽  
Hsuan-Chen Lu

In this study, a dual-beam piezoelectric energy harvester is proposed. This harvester consists of a main beam and an auxiliary beam with a pair of magnets attached to couple their motions. The potential energy of the system is modeled to understand the influence of the potential wells on the dynamics of the harvester. It is noted that the alignment of the magnets significantly influences the potential wells. A theoretical model of the harvester is developed based on the Euler-Bernoulli beam theory. Frequency sweeps are conducted experimentally and numerically to study the dynamics of the harvester. It is shown that the dual-beam harvester can exhibit hardening effect with different configurations of magnet alignments in frequency sweeps. The performance of the harvester can be improved with proper placement of the magnets.


Sign in / Sign up

Export Citation Format

Share Document