Thermal Postbuckling Analysis of 3D Braided Composite Cylindrical Shells

2010 ◽  
Vol 26 (2) ◽  
pp. 113-122 ◽  
Author(s):  
Z.-M. Li ◽  
D.-Q. Yang

AbstractThermal postbuckling analysis is presented for 3D braided composite cylindrical shell of finite length subjected to a uniform temperature rise. Based on a micro-macro-mechanical model, a 3D braided composite may be as a cell system and the geometry of each cell is deeply dependent on its position in the cross-section of the cylindrical shell. The material properties of epoxy are expressed as a linear function of temperature. The governing equations are based on Reddy's higher order shear deformation shell theory with a von Kármán-Donnell-type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed to determine the buckling temperatures and postbuckling behaviors of 3D braided composite cylindrical shells. The numerical illustrations concern the postbuckling behavior of perfect and imperfect, braided composite cylindrical shells with different values of geometric parameter and of fiber volume fraction. The results show that the shell has lower buckling temperatures and postbuckling equilibrium paths when the temperature-dependent properties are taken into account. The results reveal that the fiber volume fraction, braiding angle and the shell geometric parameter have a significant effect on the thermal buckling and postbuckling behavior of braided composite cylindrical shells.

2009 ◽  
Vol 131 (6) ◽  
Author(s):  
Zhi-Min Li ◽  
Zhong-Qin Lin ◽  
Guan-Long Chen

Nonlinear buckling and postbuckling behavior for a 3D braided composite cylindrical shell of finite length subjected to lateral pressure, hydrostatic pressure, or external liquid pressure in thermal environments have been presented in this paper. Based on a new micromacromechanical model, a 3D braided composite may be treated as a cell system and the geometry of each cell is deeply dependent on its position in the cross section of the cylindrical shell. The material properties of the epoxy are expressed as a linear function of temperature. The governing equations are based on Reddy’s higher order shear deformation shell theory with a von Kármán–Donnell type of kinematic nonlinearity and including thermal effects. A singular perturbation technique is employed to determine the buckling pressure and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect braided composite cylindrical shells with different values of geometric parameter and of fiber volume fraction in different cases of thermal environmental conditions. The results show that the shell has lower buckling pressures and postbuckling paths when the temperature-dependent properties are taken into account. The results reveal that the temperature changes, the fiber volume fraction, and the shell geometric parameter have a significant effect on the buckling pressure and postbuckling behavior of braided composite cylindrical shells.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


2021 ◽  
pp. 002199832110112
Author(s):  
Qing Yang Steve Wu ◽  
Nan Zhang ◽  
Weng Heng Liew ◽  
Vincent Lim ◽  
Xiping Ni ◽  
...  

Propagation of ultrasonic wave in Carbon Fiber Reinforced Polymer (CFRP) is greatly influenced by the material’s matrix, resins and fiber volume ratio. Laser ultrasonic broadband spectral technique has been demonstrated for porosity and fiber volume ratio extraction on unidirection aligned CFRP laminates. Porosity in the matrix materials can be calculated by longitudinal wave attenuation and accurate fiber volume ratio can be derived by combined velocity through the high strength carbon fiber and the matrix material with further consideration of porosity effects. The results have been benchmarked by pulse-echo ultrasonic tests, gas pycnometer and thermal gravimetric analysis (TGA). The potentials and advantages of the laser ultrasonic technique as a non-destructive evaluation method for CFRP carbon fiber volume fraction evaluation were demonstrated.


2021 ◽  
Author(s):  
GEORGE BARLOW ◽  
MATHEW SCHEY ◽  
SCOTT STAPLETON

Modeling composites can be an effective way to understand how a part will perform without requiring the destruction of costly specimens. By combining artificial fiber entanglement with manufacturing process simulation, a method was developed to create fiber bundle models using entanglement to control the fiber volume fraction. This fiber entanglement generation uses three parameters, probability of swapping (p_(r_S )), swapping radius standard deviation (r_(σ_S )), and the swapping plane spacing (l_S), to control the amount of entanglement within the fiber bundle. A parametric study was conducted and found that the more entanglement within a fiber bundle, the more compression mold pressure required to compact the fiber bundle to the same fiber volume fraction as that required for a less entangled bundle. This artificial fiber entanglement and manufacturing process simulation method for creating fiber bundles shows the potential to be able to create bundles with controlled final volume fraction using a desired mold compression pressure.


Sign in / Sign up

Export Citation Format

Share Document