scholarly journals The Stellar Mass Distribution of Powerful Radio Galaxies Across 1 < z < 5.2

2006 ◽  
Vol 2 (S235) ◽  
pp. 427-427
Author(s):  
Nick Seymour ◽  
D. Stern ◽  
C. De Breuck ◽  

AbstractWe present the results of a comprehensive Spitzer survey of 70 radio galaxies across 1 < z < 5.2. Using IRAC (3.6–8.0μm), IRS (16 μm) and MIPS (24–160 μm) imaging, we decompose the rest-frame optical to infrared spectral energy distributions into stellar, AGN, and dust components and determine the contribution of host galaxy stellar emission at rest-frame 1.6 μm (H-band). We find that the fraction of emitted light at rest-frame 1.6 μm from stars is >80% for over half the high redshift radio galaxies. The other radio galaxies have 1.6 μm stellar fractions spanning the range 20–80%. The resultant stellar luminosities imply stellar masses of 1011−12M⊙, independent of redshift, indicating that radio galaxies are amoungst the most massive galaxies observed over this redshift range. Powerful radio galaxies tend to lie in a similar region of mid-IR color-color space as unobscured AGN, despite the inferred stellar contribution to their shorter-wavelength, mid-IR SEDs. The stellar fraction of the rest-frame 1.6 μm luminosity has no correlation with redshift, radio luminosity, or rest-frame mid-IR (5 μm) luminosity. The bolometric energy output of these sources is dominated by the infrared, and the mid-IR luminosities are found to be similar to that of lower redshift (z < 1) radio galaxies. As expected, these exceptionally high mid-IR luminosities are consistent with an obscured, highly-accreting AGN. A weak, but significant, correlation of stellar mass with radio luminosity is found, consistent with earlier results.

2017 ◽  
Vol 599 ◽  
pp. A123 ◽  
Author(s):  
N. P. H. Nesvadba ◽  
C. De Breuck ◽  
M. D. Lehnert ◽  
P. N. Best ◽  
C. Collet

We present VLT/SINFONI imaging spectroscopy of the rest-frame optical emission lines of warm ionized gas in 33 powerful radio galaxies at redshifts z ≳ 2, which are excellent sites to study the interplay of rapidly accreting active galactic nuclei and the interstellar medium of the host galaxy in the very late formation stages of massive galaxies. Our targets span two orders of magnitude in radio size (2−400 kpc) and kinetic jet energy (a few 1046– almost 1048 erg s-1). All sources have complex gas kinematics with broad line widths up to ~1300 km s-1. About half have bipolar velocity fields with offsets up to 1500 km s-1 and are consistent with global back-to-back outflows. The others have complex velocity distributions, often with multiple abrupt velocity jumps far from the nucleus of the galaxy, and are not associated with a major merger in any obvious way. We present several empirical constraints that show why gas kinematics and radio jets seem to be physically related in all galaxies of the sample. The kinetic energy in the gas from large scale bulk and local outflow or turbulent motion corresponds to a few 10-3 to 10-2 of the kinetic energy output of the radio jet. In galaxies with radio jet power ≳ 1047 erg s-1, the kinetic energy in global back-to-back outflows dominates the total energy budget of the gas, suggesting that bulk motion of outflowing gas encompasses the global interstellar medium. This might be facilitated by the strong gas turbulence, as suggested by recent analytical work. We compare our findings with recent hydrodynamic simulations, and discuss the potential consequences for the subsequent evolution of massive galaxies at high redshift. Compared with recent models of metal enrichment in high-z AGN hosts, we find that the gas-phase metallicities in our galaxies are lower than in most low-z AGN, but nonetheless solar or even super-solar, suggesting that the ISM we see in these galaxies is very similar to the gas from which massive low-redshift galaxies formed most of their stars. This further highlights that we are seeing these galaxies near the end of their active formation phase.


Author(s):  
Guillaume Drouart ◽  
Nick Seymour ◽  
Tim J. Galvin ◽  
Jose Afonso ◽  
Joseph R. Callingham ◽  
...  

Abstract We present the results of a new selection technique to identify powerful ( $L_{\rm 500\,MHz} \gt 10^{27}\,\text{WHz}^{-1}$ ) radio galaxies towards the end of the Epoch of Reionisation. Our method is based on the selection of bright radio sources showing radio spectral curvature at the lowest frequency ( ${\sim}100\,\text{MHz}$ ) combined with the traditional faintness in K-band for high-redshift galaxies. This technique is only possible, thanks to the Galactic and Extra-galactic All-sky Murchison Wide-field Array survey which provides us with 20 flux measurements across the 70– $230\,\text{MHz}$ range. For this pilot project, we focus on the GAMA 09 field to demonstrate our technique. We present the results of our follow-up campaign with the Very Large Telescope, Australian Telescope Compact Array, and the Atacama Large Millimetre Array to locate the host galaxy and to determine its redshift. Of our four candidate high-redshift sources, we find two powerful radio galaxies in the $1<z<3$ range, confirm one at $z=5.55$ , and present a very tentative $z=10.15$ candidate. Their near-infrared and radio properties show that we are preferentially selecting some of the most radio luminous objects, hosted by massive galaxies very similar to powerful radio galaxies at $1<z<5$ . Our new selection and follow-up technique for finding powerful radio galaxies at $z>5.5$ has a high 25–50% success rate.


2020 ◽  
Vol 493 (1) ◽  
pp. 141-160 ◽  
Author(s):  
S Santos ◽  
D Sobral ◽  
J Matthee ◽  
J Calhau ◽  
E da Cunha ◽  
...  

ABSTRACT We explore deep rest-frame UV to FIR data in the COSMOS field to measure the individual spectral energy distributions (SED) of the ∼4000 SC4K (Sobral et al.) Lyman α (Ly α) emitters (LAEs) at z ∼ 2–6. We find typical stellar masses of 109.3 ± 0.6 M⊙ and star formation rates (SFR) of SFR$_{\rm SED}=4.4^{+10.5}_{-2.4}$ M⊙ yr−1 and SFR$_{\rm Ly\,\alpha }=5.9^{+6.3}_{-2.6}$ M⊙ yr−1, combined with very blue UV slopes of $\beta =-2.1^{+0.5}_{-0.4}$, but with significant variations within the population. MUV and β are correlated in a similar way to UV-selected sources, but LAEs are consistently bluer. This suggests that LAEs are the youngest and/or most dust-poor subset of the UV-selected population. We also study the Ly α rest-frame equivalent width (EW0) and find 45 ‘extreme’ LAEs with EW0 &gt; 240 Å (3σ), implying a low number density of (7 ± 1) × 10−7 Mpc−3. Overall, we measure little to no evolution of the Ly α EW0 and scale length parameter (w0), which are consistently high (EW$_0=140^{+280}_{-70}$ Å, $w_0=129^{+11}_{-11}$ Å) from z ∼ 6 to z ∼ 2 and below. However, w0 is anticorrelated with MUV and stellar mass. Our results imply that sources selected as LAEs have a high Ly α escape fraction (fesc,Ly α) irrespective of cosmic time, but fesc,Ly α is still higher for UV-fainter and lower mass LAEs. The least massive LAEs (&lt;109.5 M⊙) are typically located above the star formation ‘main sequence’ (MS), but the offset from the MS decreases towards z ∼ 6 and towards 1010 M⊙. Our results imply a lack of evolution in the properties of LAEs across time and reveals the increasing overlap in properties of LAEs and UV-continuum selected galaxies as typical star-forming galaxies at high redshift effectively become LAEs.


2019 ◽  
Vol 629 ◽  
pp. A68 ◽  
Author(s):  
S. Belladitta ◽  
A. Moretti ◽  
A. Caccianiga ◽  
G. Ghisellini ◽  
C. Cicone ◽  
...  

We present the discovery and properties of DES J014132.4−542749.9 (DES0141−54), a new powerful radio-loud active galactic nucleus (AGN) in the early Universe (z = 5.0). It was discovered by cross-matching the first data release of the Dark Energy Survey (DES DR1) with the Sidney University Molonglo Survey (SUMSS) radio catalog at 0.843 GHz. This object is the first radio-loud AGN at high redshift discovered in the DES. The radio properties of DES0141−54, namely its very large radio-loudness (R >  104), the high radio luminosity (L0.8 GHz = 1.73 × 1028 W Hz−1), and the flatness of the radio spectrum (α = 0.35) up to very high frequencies (120 GHz in the source’s rest frame), classify this object as a blazar, meaning, a radio-loud AGN observed along the relativistic jet axis. However, the X-ray luminosity of DES0141−54 is much lower compared to those of the high redshift (z ≥ 4.5) blazars discovered so far. Moreover its X-ray-to-radio luminosity ratio (log( L[0.5-10] keV / L1.4 GHz) = 9.96±0.30 Hz) is small also when compared to lower redshift blazars: only 2% of the low-z population has a similar ratio. By modeling the spectral energy distribution we found that this peculiar X-ray weakness and the powerful radio emission could be related to a particularly high value of the magnetic field. Finally, the mass of the central black hole is relatively small (MBH = 3−8 × 108 M⊙) compared to other confirmed blazars at similar redshift, making DES0141−54 the radio-loud AGN that host the smallest supermassive black hole ever discovered at z ≥ 5.


2019 ◽  
Vol 625 ◽  
pp. A111 ◽  
Author(s):  
Andrew Butler ◽  
Minh Huynh ◽  
Anna Kapińska ◽  
Ivan Delvecchio ◽  
Vernesa Smolčić ◽  
...  

The evolution of the comoving kinetic luminosity densities (Ωkin) of the radio loud high-excitation radio galaxies (RL HERGs) and the low-excitation radio galaxies (LERGs) in the ultimate XMM extragalactic survey south (XXL-S) field is presented. The wide area and deep radio and optical data of XXL-S have allowed the construction of the radio luminosity functions (RLFs) of the RL HERGs and LERGs across a wide range in radio luminosity out to high redshift (z = 1.3). The LERG RLFs display weak evolution: Φ(z)∝(1 + z)0.67 ± 0.17 in the pure density evolution (PDE) case and Φ(z)∝(1 + z)0.84 ± 0.31 in the pure luminosity evolution (PLE) case. The RL HERG RLFs demonstrate stronger evolution than the LERGs: Φ(z)∝(1 + z)1.81 ± 0.15 for PDE and Φ(z)∝(1 + z)3.19 ± 0.29 for PLE. Using a scaling relation to convert the 1.4 GHz radio luminosities into kinetic luminosities, the evolution of Ωkin was calculated for the RL HERGs and LERGs and compared to the predictions from various simulations. The prediction for the evolution of radio mode feedback in the Semi-Analytic Galaxy Evolution (SAGE) model is consistent with the Ωkin evolution for all XXL-S RL AGN (all RL HERGs and LERGs), indicating that the kinetic luminosities of RL AGN may be able to balance the radiative cooling of the hot phase of the IGM. Simulations that predict the Ωkin evolution of LERG equivalent populations show similar slopes to the XXL-S LERG evolution, suggesting that observations of LERGs are well described by models of SMBHs that slowly accrete hot gas. On the other hand, models of RL HERG equivalent populations differ in their predictions. While LERGs dominate the kinetic luminosity output of RL AGN at all redshifts, the evolution of the RL HERGs in XXL-S is weaker compared to what other studies have found. This implies that radio mode feedback from RL HERGs is more prominent at lower redshifts than was previously thought.


2020 ◽  
Vol 498 (2) ◽  
pp. 2323-2338
Author(s):  
Thomas M Jackson ◽  
D J Rosario ◽  
D M Alexander ◽  
J Scholtz ◽  
Stuart McAlpine ◽  
...  

ABSTRACT In this paper, we present data from 72 low-redshift, hard X-ray selected active galactic nucleus (AGN) taken from the Swift–BAT 58 month catalogue. We utilize spectral energy distribution fitting to the optical to infrared photometry in order to estimate host galaxy properties. We compare this observational sample to a volume- and flux-matched sample of AGN from the Evolution and Assembly of GaLaxies and their Environments (EAGLE) hydrodynamical simulations in order to verify how accurately the simulations can reproduce observed AGN host galaxy properties. After correcting for the known +0.2 dex offset in the SFRs between EAGLE and previous observations, we find agreement in the star formation rate (SFR) and X-ray luminosity distributions; however, we find that the stellar masses in EAGLE are 0.2–0.4 dex greater than the observational sample, which consequently leads to lower specific star formation rates (sSFRs). We compare these results to our previous study at high redshift, finding agreement in both the observations and simulations, whereby the widths of sSFR distributions are similar (∼0.4–0.6 dex) and the median of the SFR distributions lie below the star-forming main sequence by ∼0.3–0.5 dex across all samples. We also use EAGLE to select a sample of AGN host galaxies at high and low redshift and follow their characteristic evolution from z = 8 to z = 0. We find similar behaviour between these two samples, whereby star formation is quenched when the black hole goes through its phase of most rapid growth. Utilizing EAGLE we find that 23 per cent of AGN selected at z ∼ 0 are also AGN at high redshift, and that their host galaxies are among the most massive objects in the simulation. Overall, we find EAGLE reproduces the observations well, with some minor inconsistencies (∼0.2 dex in stellar masses and ∼0.4 dex in sSFRs).


2012 ◽  
Vol 10 (H16) ◽  
pp. 128-128
Author(s):  
Jamie R. Ownsworth ◽  
Christopher J. Conselice ◽  
Alice Mortlock ◽  
William G. Hartley ◽  
Fernando Buitrago

We investigate the resolved star formation properties of a sample of 45 massive galaxies (M* > 1011 M⊙) within a redshift range of 1.5 ⩽ z ⩽ 3 detected in the GOODS NICMOS Survey (Conselice et al. 2011), a HST H160-band imaging program. We derive the star formation rate as a function of radius using rest frame UV data from deep z850 ACS imaging. The star formation present at high redshift is then extrapolated to z = 0, and we examine the stellar mass produced in individual regions within each galaxy. We also construct new stellar mass profiles of the in situ stellar mass at high redshift from Sérsic fits to rest-frame optical, H160-band, data. We combine the two stellar mass profiles to produce an evolved stellar mass profile. We then fit a new Sérsic profile to the evolved profile, from which we examine what effect the resulting stellar mass distribution added via star formation has on the structure and size of each individual galaxy.


2018 ◽  
Vol 620 ◽  
pp. A82 ◽  
Author(s):  
C. Circosta ◽  
V. Mainieri ◽  
P. Padovani ◽  
G. Lanzuisi ◽  
M. Salvato ◽  
...  

Theoretical models of galaxy formation suggest that the presence of an active galactic nucleus (AGN) is required to regulate the growth of its host galaxy through feedback mechanisms, produced by, for example, AGN-driven outflows. Although many observational studies have revealed that such outflows are common both at low and high redshift, a comprehensive picture is still missing. In particular, the peak epoch of galaxy assembly (1 <  z <  3) has been poorly explored so far, and current observations in this redshift range are mostly limited to targets with high chances to be in an outflowing phase. This paper introduces SUPER (a SINFONI Survey for Unveiling the Physics and Effect of Radiative feedback), an ongoing ESO’s VLT/SINFONI Large Programme. SUPER will perform the first systematic investigation of ionized outflows in a sizeable and blindly-selected sample of 39 X-ray AGN at z ∼ 2, which reaches high spatial resolutions (∼2 kpc) thanks to the adaptive optics-assisted IFS observations. The outflow morphology and star formation in the host galaxy will be mapped through the broad component of [O III]λ5007 and the narrow component of Hα emission lines. The main aim of our survey is to infer the impact of outflows on the on-going star formation and to link the outflow properties to a number of AGN and host galaxy properties. We describe here the survey characteristics and goals, as well as the selection of the target sample. Moreover, we present a full characterization of its multi-wavelength properties: we measure, via spectral energy distribution fitting of UV-to-FIR photometry, stellar masses (4 × 109 − 2 × 1011 M⊙), star formation rates (25 − 680 M⊙ yr−1) and AGN bolometric luminosities (2 × 1044 − 8 × 1047 erg s−1), along with obscuring column densities (up to 2 × 1024 cm−2) and luminosities in the hard 2 − 10 keV band (2 × 1043 − 6 × 1045 erg s−1) derived through X-ray spectral analysis. Finally, we classify our AGN as jetted or non-jetted according to their radio and FIR emission.


2019 ◽  
Vol 621 ◽  
pp. A139 ◽  
Author(s):  
K. Tisanić ◽  
V. Smolčić ◽  
J. Delhaize ◽  
M. Novak ◽  
H. Intema ◽  
...  

We construct the average radio spectral energy distribution (SED) of highly star-forming galaxies (HSFGs) up to z ∼ 4. Infrared and radio luminosities are bound by a tight correlation that is defined by the so-called q parameter. This infrared–radio correlation provides the basis for the use of radio luminosity as a star-formation tracer. Recent stacking and survival analysis studies find q to be decreasing with increasing redshift. It was pointed out that a possible cause of the redshift trend could be the computation of rest-frame radio luminosity via a single power-law assumption of the star-forming galaxies’ (SFGs) SED. To test this, we constrained the shape of the radio SED of a sample of HSFGs. To achieve a broad rest-frame frequency range, we combined previously published Very Large Array observations of the COSMOS field at 1.4 GHz and 3 GHz with unpublished Giant Meterwave Radio Telescope (GMRT) observations at 325 MHz and 610 MHz by employing survival analysis to account for non-detections in the GMRT maps. We selected a sample of HSFGs in a broad redshift range (z ∈ [0.3, 4],  SFR ≥ 100 M⊙ yr−1) and constructed the average radio SED. By fitting a broken power-law, we find that the spectral index changes from α1 = 0.42 ± 0.06 below a rest-frame frequency of 4.3 GHz to α2 = 0.94 ± 0.06 above 4.3 GHz. Our results are in line with previous low-redshift studies of HSFGs ( SFR >  10 M⊙  yr−1) that show the SED of HSFGs to differ from the SED found for normal SFGs ( SFR <  10 M⊙ yr−1). The difference is mainly in a steeper spectrum around 10 GHz, which could indicate a smaller fraction of thermal free–free emission. Finally, we also discuss the impact of applying this broken power-law SED in place of a simple power-law in K-corrections of HSFGs and a typical radio SED for normal SFGs drawn from the literature. We find that the shape of the radio SED is unlikely to be the root cause of the q − z trend in SFGs.


1987 ◽  
Vol 124 ◽  
pp. 143-146
Author(s):  
M.G. Yates ◽  
L. Miller ◽  
J.A. Peacock

The infrared photometric study of a sample of 90 3CR radio galaxies by Lilly & Longair (1984, hereafter LL) has demonstrated that the high redshift objects are brighter in the infrared than their low redshift counterparts; this has been interpreted as being entirely due to the evolution of their constituent stellar populations. There is however a great difference between the radio luminosities of the high and low redshift objects in this flux limited sample and we have therefore examined statistically the possibility of a correlation between the infrared and radio luminosities of these galaxies, the presence of which could bias our interpretation of the infrared Hubble diagram. We find that the radio and infrared luminosities do indeed correlate for the most powerful radio galaxies.


Sign in / Sign up

Export Citation Format

Share Document