scholarly journals Formation and early evolution of massive black holes

2006 ◽  
Vol 2 (S238) ◽  
pp. 73-82
Author(s):  
Piero Madau

AbstractThe astrophysical processes that led to the formation of the first seed black holes and to their growth into the supermassive variety that powers bright quasars at z ∼ 6 are poorly understood. In standard ΛCDM hierarchical cosmologies, the earliest massive holes (MBHs) likely formed at redshift z ≳ 15 at the centers of low-mass (M ≳ 5 × 105 M⊙) dark matter “minihalos”, and produced hard radiation by accretion. FUV/X-ray photons from such “miniquasars” may have permeated the universe more uniformly than EUV radiation, reduced gas clumping, and changed the chemistry of primordial gas. The role of accreting seed black holes in determining the thermal and ionization state of the intergalactic medium depends on the amount of cold and dense gas that forms and gets retained in protogalaxies after the formation of the first stars. The highest resolution N-body simulation to date of Galactic substructure shows that subhalos below the atomic cooling mass were very inefficient at forming stars.

2008 ◽  
Vol 4 (S255) ◽  
pp. 56-60 ◽  
Author(s):  
Katherine Freese ◽  
Douglas Spolyar ◽  
Anthony Aguirre ◽  
Peter Bodenheimer ◽  
Paolo Gondolo ◽  
...  

AbstractThe first phase of stellar evolution in the history of the universe may be Dark Stars, powered by dark matter heating rather than by fusion. Weakly interacting massive particles, which are their own antiparticles, can annihilate and provide an important heat source for the first stars in the the universe. This talk presents the story of these Dark Stars. We make predictions that the first stars are very massive (~800M⊙), cool (6000 K), bright (~106L⊙), long-lived (~106years), and probable precursors to (otherwise unexplained) supermassive black holes. Later, once the initial DM fuel runs out and fusion sets in, DM annihilation can predominate again if the scattering cross section is strong enough, so that a Dark Star is born again.


2012 ◽  
Vol 08 ◽  
pp. 396-399 ◽  
Author(s):  
ELEONORA TORRESI ◽  
PAOLA GRANDI ◽  
ELISA COSTANTINI ◽  
GIORGIO G. C. PALUMBO

One of the main debated astrophysical problems is the role of the AGN feedback in galaxy formation. It is known that massive black holes have a profound effect on the formation and evolution of galaxies, but how black holes and galaxies communicate is still an unsolved problem. For Radio Galaxies, feedback studies have mainly focused on jet/cavity systems in the most massive and X–ray luminous galaxy clusters. The recent high–resolution detection of warm absorbers in some Broad Line Radio Galaxies allow us to investigate the interplay between the nuclear engine and the surrounding medium from a different perspective. We report on the detection of warm absorbers in two Broad Line Radio Galaxies, 3C 382 and 3C 390.3, and discuss the physical and energetic properties of the absorbing gas. Finally, we attempt a comparison between radio–loud and radio–quiet outflows.


Author(s):  
Alon Banet ◽  
Rennan Barkana ◽  
Anastasia Fialkov ◽  
Or Guttman

Abstract The epoch in which the first stars and galaxies formed is among the most exciting unexplored eras of the Universe. A major research effort is focused on probing this era with the 21-cm spectral line of hydrogen. While most research focuses on statistics like the 21-cm power spectrum or the sky-averaged global signal, there are other ways to analyze tomographic 21-cm maps, which may lead to novel insights. We suggest statistics based on quantiles as a method to probe non-Gaussianities of the 21-cm signal. We show that they can be used in particular to probe the variance, skewness, and kurtosis of the temperature distribution, but are more flexible and robust than these standard statistics. We test these statistics on a range of possible astrophysical models, including different galactic halo masses, star-formation efficiencies, and spectra of the X-ray heating sources, plus an exotic model with an excess early radio background. Simulating data with angular resolution and thermal noise as expected for the Square Kilometre Array (SKA), we conclude that these statistics can be measured out to redshifts above 20 and offer a promising statistical method for probing early cosmic history.


2019 ◽  
Vol 15 (S356) ◽  
pp. 143-143
Author(s):  
Jaya Maithil ◽  
Michael S. Brotherton ◽  
Bin Luo ◽  
Ohad Shemmer ◽  
Sarah C. Gallagher ◽  
...  

AbstractActive Galactic Nuclei (AGN) exhibit multi-wavelength properties that are representative of the underlying physical processes taking place in the vicinity of the accreting supermassive black hole. The black hole mass and the accretion rate are fundamental for understanding the growth of black holes, their evolution, and the impact on the host galaxies. Recent results on reverberation-mapped AGNs show that the highest accretion rate objects have systematic shorter time-lags. These super-Eddington accreting massive black holes (SEAMBHs) show BLR size 3-8 times smaller than predicted by the Radius-Luminosity (R-L) relationship. Hence, the single-epoch virial black hole mass estimates of highly accreting AGNs have an overestimation of a factor of 3-8 times. SEAMBHs likely have a slim accretion disk rather than a thin disk that is diagnostic in X-ray. I will present the extreme X-ray properties of a sample of dozen of SEAMBHs. They indeed have a steep hard X-ray photon index, Γ, and demonstrate a steeper power-law slope, ασx.


New Astronomy ◽  
1999 ◽  
Vol 4 (4) ◽  
pp. 313-323 ◽  
Author(s):  
G.E. Brown ◽  
C.-H. Lee ◽  
Hans A. Bethe
Keyword(s):  
X Ray ◽  
Low Mass ◽  

Author(s):  
Gianfranco Bertone

The spectacular advances of modern astronomy have opened our horizon on an unexpected cosmos: a dark, mysterious Universe, populated by enigmatic entities we know very little about, like black holes, or nothing at all, like dark matter and dark energy. In this book, I discuss how the rise of a new discipline dubbed multimessenger astronomy is bringing about a revolution in our understanding of the cosmos, by combining the traditional approach based on the observation of light from celestial objects, with a new one based on other ‘messengers’—such as gravitational waves, neutrinos, and cosmic rays—that carry information from otherwise inaccessible corners of the Universe. Much has been written about the extraordinary potential of this new discipline, since the 2017 Nobel Prize in physics was awarded for the direct detection of gravitational waves. But here I will take a different angle and explore how gravitational waves and other messengers might help us break the stalemate that has been plaguing fundamental physics for four decades, and to consolidate the foundations of modern cosmology.


BIBECHANA ◽  
1970 ◽  
Vol 6 ◽  
pp. 27-30
Author(s):  
Devendra Adhikari ◽  
Krishna Raj Adhikari

Different physical phenomena, techniques, and evidences which give the proof for the existence of dark matter have been discussed. Keywords: Baryonic matter; dark matter; Chandra x-ray ObservatoryDOI: 10.3126/bibechana.v6i0.3936BIBECHANA Vol. 6, March 2010 pp.27-30


2020 ◽  
Vol 501 (1) ◽  
pp. 1426-1439
Author(s):  
Bernard Carr ◽  
Sebastien Clesse ◽  
Juan García-Bellido

ABSTRACT If primordial black holes (PBHs) formed at the quark-hadron epoch, their mass must be close to the Chandrasekhar limit, this also being the characteristic mass of stars. If they provide the dark matter (DM), the collapse fraction must be of order the cosmological baryon-to-photon ratio ∼10−9, which suggests a scenario in which a baryon asymmetry is produced efficiently in the outgoing shock around each PBH and then propagates to the rest of the Universe. We suggest that the temperature increase in the shock provides the ingredients for hotspot electroweak baryogenesis. This also explains why baryons and DM have comparable densities, the precise ratio depending on the size of the PBH relative to the cosmological horizon at formation. The observed value of the collapse fraction and baryon asymmetry depends on the amplitude of the curvature fluctuations that generate the PBHs and may be explained by an anthropic selection effect associated with the existence of galaxies. We propose a scenario in which the quantum fluctuations of a light stochastic spectator field during inflation generate large curvature fluctuations in some regions, with the stochasticity of this field providing the basis for the required selection. Finally, we identify several observational predictions of our scenario that should be testable within the next few years. In particular, the PBH mass function could extend to sufficiently high masses to explain the black hole coalescences observed by LIGO/Virgo.


Author(s):  
S Sazonov ◽  
I Khabibullin

Abstract There is a hope that looking into the early Universe with next-generation telescopes, one will be able to observe the early accretion growth of supermassive black holes (BHs) when their masses were ∼104–106M⊙. According to the standard accretion theory, the bulk of the gravitational potential energy released by radiatively efficient accretion of matter onto a BH in this mass range is expected to be emitted in the extreme UV–ultrasoft X-ray bands. We demonstrate that such a ’miniquasar’ at z ∼ 15 should leave a specific, localized imprint on the 21 cm cosmological signal. Namely, its position on the sky will be surrounded by a region with a fairly sharp boundary of several arcmin radius, within which the 21 cm brightness temperature quickly grows inwards from the background value of ∼−250 mK to ∼+30 mK. The size of this region is only weakly sensitive to the BH mass, so that the flux density of the excess 21 cm signal is expected to be ∼0.1–0.2 mJy at z ∼ 15 and should be detectable by the Square Kilometer Array. We argue that an optimal strategy would be to search for such signals from high-z miniquasar candidates that can be found and localized with a next-generation X-ray mission such as Lynx. A detection of the predicted 21 cm signal would provide a measurement of the growing BH’s redshift to within Δz/(1 + z) ≲ 0.01.


2004 ◽  
Vol 194 ◽  
pp. 200-201
Author(s):  
Ivan Hubeny ◽  
Dayal T. Wickramasinghe

We investigate the effects of irradiation on the vertical structure of accretion discs around black holes and its impact on the emergent energy distribution. Models are presented for a 10 Solar mass black hole in a low mass X-ray binary assuming a black body spectrum for the incident radiation. We show that for a disc annulus at a given radius, the spectra become increasingly distorted as the incident flux increases relative to the viscously generated heating flux in the disc. Significant effects are apparent for rings even at distances of ~ 10,000 Schwarzschild radii from the black hole for realistic dilution factors.


Sign in / Sign up

Export Citation Format

Share Document