scholarly journals Giant impact, planetary merger, and diversity of planetary-core mass

2007 ◽  
Vol 3 (S249) ◽  
pp. 301-303
Author(s):  
S.-L. Li ◽  
C. Agnor ◽  
D. N. C. Lin

AbstractTransit observations indicate a large dispersion in the internal structure among the known gas giants. This is a big challenge to the conventional sequential planetary formation scenario because the diversity is inconsistent with the expectation of some well defined critical condition for the onset of gas accretion in this scenario. We suggest that giant impacts may lead to the merger of planets or the accretion of planetary embryos and cause the diversity of the core mass. By using an SPH scheme, we show that direct parabolic collisions generally lead to the total coalescence of impinging gas giants whereas, during glancing collisions, the efficiency of core retention is much larger than that of the envelope. We also examine the adjustment of the gaseous envelope with a 1D Lagrangian hydrodynamic scheme. In the proximity of their host stars, the expansion of the planets' envelopes, shortly after sufficiently catastrophic impacts, can lead to a substantial loss of gas through Roche-lobe overflow. We are going to examine the possibility that the accretion of several Earth-mass objects can significantly enlarge the planets' photosphere and elevate the tidal dissipation rate over the time scale of 100 Myr.

2019 ◽  
Vol 490 (2) ◽  
pp. 2336-2346
Author(s):  
L A DePaula ◽  
T A Michtchenko ◽  
P A Sousa-Silva

ABSTRACT In this work, we adapt a module for planetary formation within the hydrodynamic code fargo3d. Planetary formation is modelled by a solid core accretion scenario, with the core growing in oligarchic regime. The initial superficial density of planetesimals is proportional to the initial superficial density of gas in the disc. We include a numerical approach to describe the evolution of the eccentricity and the inclination of planetesimals during the formation. This approach impacts directly on the accretion rate of solids. When the core reaches a critical mass, gas accretion begins, following the original fargo scheme adapted to the fargo3d code. To exemplify how the module for planetary formation can be used, we investigate the migration of a planet in a 2D, locally isothermal gas disc with a prescribed accretion rate, analysing the time-scale involved in the planetary migration process along with the time-scale for planetary formation. The analysis reveals that the mass of the nucleus must be close to its critical value when crossing the ice line to avoid the planet’s fall into the stellar envelope. This will allow enough time for the planet to initiate runaway gas accretion, leading to a rapid mass increase and entering type II planetary migration.


2020 ◽  
Vol 498 (1) ◽  
pp. 680-688 ◽  
Author(s):  
Sivan Ginzburg ◽  
Eugene Chiang

ABSTRACT Some Jupiter-mass exoplanets contain ${\sim}100\, {\rm M}_{\hbox{$\oplus $}}$ of metals, well above the ${\sim}10\, {\rm M}_{\hbox{$\oplus $}}$ typically needed in a solid core to trigger giant planet formation by runaway gas accretion. We demonstrate that such ‘heavy-metal Jupiters’ can result from planetary mergers near ∼10 au. Multiple cores accreting gas at runaway rates gravitationally perturb one another on to crossing orbits such that the average merger rate equals the gas accretion rate. Concurrent mergers and gas accretion implies the core mass scales with the total planet mass as Mcore ∝ M1/5 – heavier planets harbour heavier cores, in agreement with the observed relation between total mass and metal mass. While the average gas giant merges about once to double its core, others may merge multiple times, as merger trees grow chaotically. We show that the dispersion of outcomes inherent in mergers can reproduce the large scatter in observed planet metallicities, assuming $3{-}30\, {\rm M}_{\hbox{$\oplus $}}$ pre-runaway cores. Mergers potentially correlate metallicity, eccentricity, and spin.


2019 ◽  
Vol 490 (3) ◽  
pp. 3144-3157 ◽  
Author(s):  
William Béthune

Abstract Planet formation scenarios can be constrained by the ratio of the gaseous envelope mass relative to the solid core mass in the observed exoplanet populations. One-dimensional calculations find a critical (maximal) core mass for quasi-static envelopes to exist, suggesting that envelopes around more massive cores should collapse due to a ‘core-nucleated’ instability. We study self-gravitating planetary envelopes via hydrodynamic simulations, progressively increasing the dimensionality of the problem. We characterize the core-nucleated instability and its non-linear evolution into runaway gas accretion in one-dimensional spherical envelopes. We show that rotationally supported envelopes can enter a runaway accretion regime via polar shocks in a two-dimensional axisymmetric model. This picture remains valid for high-mass cores in three dimensions, where the gas gravity mainly adds up to the core gravity and enhances the mass accretion rate of the planet in time. We relate the core-nucleated instability to the absence of equilibrium connecting the planet to its parent disc and discuss its relevance for massive planet formation.


2020 ◽  
Vol 634 ◽  
pp. A15 ◽  
Author(s):  
M. G. Brouwers ◽  
C. W. Ormel

Context. Proto-planets embedded in their natal disks acquire hot envelopes as they grow and accrete solids. This ensures that the material they accrete – pebbles, as well as (small) planetesimals – will vaporize to enrich their atmospheres. Enrichment modifies an envelope’s structure and significantly alters its further evolution. Aims. Our aim is to describe the formation of planets with polluted envelopes from the moment that impactors begin to sublimate to beyond the disk’s eventual dissipation. Methods. We constructed an analytical interior structure model, characterized by a hot and uniformly mixed high-Z vapor layer surrounding the core, located below the usual unpolluted radiative-convective regions. Our model assumes an ideal equation of state and focuses on identifying trends rather than precise calculations. The expressions we derived are applicable to all single-species pollutants, but we used SiO2 to visualize our results. Results. The evolution of planets with uniformly mixed polluted envelopes follows four potential phases. Initially, the central core grows directly through impacts and rainout until the envelope becomes hot enough to vaporize and absorb all incoming solids. We find that a planet reaches runaway accretion when the sum of its core and vapor mass exceeds a value that we refer to as the critical metal mass – a criterion that supersedes the traditional critical core mass. The critical metal mass scales positively with both the pollutant’s evaporation temperature and with the planet’s core mass. Hence, planets at shorter orbital separations require the accretion of more solids to reach runaway as they accrete less volatile materials. If the solids accretion rate dries up, we identify the decline of the mean molecular weight – dilution – as a mechanism to limit gas accretion during a polluted planet’s embedded cooling phase. When the disk ultimately dissipates, the envelope’s inner temperature declines and its vapor eventually rains out, augmenting the mass of the core. The energy release that accompanies this does not result in significant mass-loss, as it only occurs after the planet has substantially contracted.


1981 ◽  
Vol 93 ◽  
pp. 133-134
Author(s):  
Hiroshi Mizuno

The structure of a gaseous envelope surrounding a icy/rocky core is studied in consideration of radiative transfer. It is found that when the core grows beyond a critical core mass, the envelope cannot be in equilibrium and collapses onto the core to form a proto-giant planet. The results are as follows (for details, see Mizuno 1980).1) The critical core mass is smaller than that estimated by Perri and Cameron (1974) and Mizuno, Nakazawa and Hayashi (1978). 2) When the grain opacity in the envelope varies from 0 to 1 cm2/g, the critical core mass changes from ~2 to ~12 Earth's masses. 3) The critical core mass is independent of the region in the solar nebula.These are due to the existence of the radiative region in the envelope.


2020 ◽  
Vol 638 ◽  
pp. A52 ◽  
Author(s):  
C. Mordasini

Context. Observations have revealed in the Kepler data a depleted region separating smaller super-Earths from larger sub-Neptunes. This can be explained as an evaporation valley between planets with and without H/He that is caused by atmospheric escape. Aims. We want to analytically derive the valley’s locus and understand how it depends on planetary properties and stellar X-ray and ultraviolet (XUV) luminosity. We also want to derive constraints for planet formation models. Methods. First, we conducted numerical simulations of the evolution of close-in low-mass planets with H/He undergoing escape. We performed parameter studies with grids in core mass and orbital separation, and we varied the postformation H/He mass, the strength of evaporation, and the atmospheric and core composition. Second, we developed an analytical model for the valley locus. Results. We find that the bottom of the valley quantified by the radius of the largest stripped core, Rbare, at a given orbital distance depends only weakly on postformation H/He mass. The reason is that a high initial H/He mass means that more gas needs to evaporate, but also that the planet density is lower, increasing mass loss. Regarding the stellar XUV-luminosity, Rbare is found to scale as LXUV0.135. The same weak dependency applies to the efficiency factor ε of energy-limited evaporation. As found numerically and analytically, Rbare varies a function of orbital period P for a constant ε as P−2pc∕3 ≈ P−0.18, where Mc ∝ Rcpc is the mass-radius relation of solid cores. We note that Rbare is about 1.7 R⊕ at a ten-day orbital period for an Earth-like composition. Conclusions. The numerical results are explained very well with the analytical model where complete evaporation occurs if the temporal integral over the stellar XUV irradiation that is absorbed by the planet is larger than the binding energy of the envelope in the gravitational potential of the core. The weak dependency on the postformation H/He means that the valley does not strongly constrain gas accretion during formation. But the weak dependency on primordial H/He mass, stellar LXUV, and ε could be the reason why the valley is so clearly visible observationally, and why various models find similar results theoretically. At the same time, given the large observed spread of LXUV, the dependency on it is still strong enough to explain why the valley is not completely empty.


2021 ◽  
Vol 923 (1) ◽  
pp. 81
Author(s):  
Yuji Matsumoto ◽  
Eiichiro Kokubo ◽  
Pin-Gao Gu ◽  
Kenji Kurosaki

Abstract The Kepler transit survey with follow-up spectroscopic observations has discovered numerous super-Earth sized planets and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. For the first time, we investigate the size evolution of planets via both giant impacts and photoevaporation to compare with these observed features. We calculate the size of a protoplanet, which is the sum of its core and envelope sizes, by analytical models. N-body simulations are performed to evolve planet sizes during the giant impact phase with envelope stripping via impact shocks. We consider the initial radial profile of the core mass and the initial envelope mass fractions as parameters. Inner planets can lose their whole envelopes via giant impacts, while outer planets can keep their initial envelopes, because they do not experience giant impacts. Photoevaporation is simulated to evolve planet sizes afterward. Our results suggest that the period-radius distribution of the observed planets would be reproduced if we perform simulations in which the initial radial profile of the core mass follows a wide range of power-law distributions and the initial envelope mass fractions are ∼0.1. Moreover, our model shows that the adjacent planetary pairs have similar sizes and regular spacings, with slight differences from detailed observational results such as the radius gap.


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


Sign in / Sign up

Export Citation Format

Share Document