scholarly journals Defining the envelope for the search for life in the Universe

2009 ◽  
Vol 5 (H15) ◽  
pp. 697-698
Author(s):  
Lynn J. Rothschild

AbstractThe search for life in the universe relies on defining the limits for life and finding suitable conditions for its origin and evolution elsewhere. From the biological perspective, a conservative approach uses life on earth to set constraints on the environments in which life can live. Conditions for the origin of life, even on earth, cannot yet be defined with certainty. Thus, we will describe what is known about conditions for the origin of life and limits to life on earth as a template for life elsewhere, with a particular emphasis on such physical and chemical parameters as temperature, pH, salinity, desiccation and radiation. But, other life forms could exist, thus extending the theoretical possibility for life elsewhere. Yet, this potential is not limitless, and so constraints for life in the universe will be suggested.

2006 ◽  
pp. 147-198
Author(s):  
Jordi Llorca ◽  
Malcolm E. Schrader ◽  
Pasquale Stano ◽  
Francesca Ferri ◽  
Pier Luigi Luisi

2016 ◽  
Vol 18 (30) ◽  
pp. 20033-20046 ◽  
Author(s):  
Sankar Chatterjee

Submarine hydrothermal vents are generally considered as the likely habitats for the origin and evolution of early life on Earth.


2010 ◽  
Vol 10 (2) ◽  
pp. 83-98 ◽  
Author(s):  
Carl H. Gibson ◽  
Rudolph E. Schild ◽  
N. Chandra Wickramasinghe

AbstractThe origin of life and the origin of the Universe are among the most important problems of science and they might be inextricably linked. Hydro-gravitational-dynamics cosmology predicts hydrogen–helium gas planets in clumps as the dark matter of galaxies, with millions of planets per star. This unexpected prediction is supported by quasar microlensing of a galaxy and a flood of new data from space telescopes. Supernovae from stellar over-accretion of planets produce the chemicals (C, N, O, P, etc.) and abundant liquid-water domains required for first life and the means for wide scattering of life prototypes. Life originated following the plasma-to-gas transition between 2 and 20 Myr after the big bang, while planetary core oceans were between critical and freezing temperatures, and interchanges of material between planets constituted essentially a cosmological primordial soup. Images from optical, radio and infrared space telescopes suggest life on Earth was neither first nor inevitable.


Life ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 42 ◽  
Author(s):  
Stuart Bartlett ◽  
Michael L. Wong

Motivated by the need to paint a more general picture of what life is—and could be—with respect to the rest of the phenomena of the universe, we propose a new vocabulary for astrobiological research. Lyfe is defined as any system that fulfills all four processes of the living state, namely: dissipation, autocatalysis, homeostasis, and learning. Life is defined as the instance of lyfe that we are familiar with on Earth, one that uses a specific organometallic molecular toolbox to record information about its environment and achieve dynamical order by dissipating certain planetary disequilibria. This new classification system allows the astrobiological community to more clearly define the questions that propel their research—e.g., whether they are developing a historical narrative to explain the origin of life (on Earth), or a universal narrative for the emergence of lyfe, or whether they are seeking signs of life specifically, or lyfe at large across the universe. While the concept of “life as we don’t know it” is not new, the four pillars of lyfe offer a novel perspective on the living state that is indifferent to the particular components that might produce it.


2017 ◽  
Vol 01 (02) ◽  
pp. 121-131 ◽  
Author(s):  
Jack W. Szostak

To understand the origin of life on Earth, and to evaluate the potential for life on exoplanets, we must understand the pathways that lead from chemistry to biology. Recent experiments suggest that a chemically rich environment that provides the building blocks of membranes, nucleic acids and peptides, along with sources of chemical energy, could result in the emergence of replicating, evolving cells. The broad scope of synthetic chemistry suggests that it may be possible to design and construct artificial life forms based upon a very different biochemistry than that of existing biology.


2021 ◽  
Vol 9 (11) ◽  
pp. 235-251
Author(s):  
Y. V. Subba Rao

              The current hypothesis leads to the panspermia origin of life, which is based on the scientific principle of electromagnetic force interaction with matter. Electromagnetic force (Sunlight) interacts with inorganic chemistry available to us given out by the stars in the universe plausibly triggers the formation of extra-terrestrial biological molecules of proto cells under abiotic conditions, as evidenced by their presence in meteorites.' Proto cells’ might theoretically give rise to living organisms with a manifested soul, allowing 'Ribose' to be formed from ice grains hit by sunlight for RNA and DNA at the same time. The presence of life's building blocks and other important organic chemicals like ribose in meteorites, including some microscopic life forms that aren't native to Earth, may have led to the 'Panspermia Origin of Life' and the 'Evolution of Life on Earth' which is evidenced by the definition of 'Meteorites' in Vedic Scriptures, such as the "Bhagavad Gita" (3000 BC) and "Brihat Samhita" (520 AD) that they are the souls of righteous people who have returned to earth to be reborn.


1989 ◽  
Vol 116 (1) ◽  
pp. 439-462
Author(s):  
Joseph N. Marcus ◽  
Margaret A. Olsen

AbstractOrganic chemicals — compounds that contain carbon — are the substance of life and pervade the universe. Is there a connection between comets, which are rich in prebiotic organics, and the origin of life? Current concepts of biomolecular evolution are first reviewed, including the important paradigm of catalytic RNA. At the very least, impacting comets appear to have supplied a substantial fraction of the volatile elements required for life shortly after the Earth formed. Some impacting material may even have survived chemically intact to directly provide necessary complex prebiotic organic chemicals. For life to originate and evolve in comets themselves, liquid H2O would be absolutely required: arguments for and against 26Al radiogenic melting of cometary cores are presented. Cometary panspermia, if theoretically possible, is not necessary to explain the origin of life on Earth. The Halley spacecraft provide evidence against Earth-type microorganisms in this comet’s dust.


2021 ◽  
Author(s):  
vivek kumar

In this article, I propose and discuss a new definition of life. This new definition considers reproduction and evolution as major aspects of life. It brings into consideration a variety of other life forms like inorganic life, etc. In this study, I aim to present the possibility of various life forms and some of their properties, which might help understand the origin of life on earth and the existence of life in other parts of the cosmos. This new proposed definition of life is independent of the mode of evolution and general enough to consider all potential life forms. This article uses NASA’s definition of life as a structure to derive this generalized definition of life. Finding and exploring new living systems will definitely be very helpful in understanding the aspects of life. In order to explain some complex life forms, a new concept of addition of living systems is introduced in this article. This study underscores the need for further work to understand the origin and properties of living systems.


Sign in / Sign up

Export Citation Format

Share Document