scholarly journals The solar wind in time

2011 ◽  
Vol 7 (S286) ◽  
pp. 286-290
Author(s):  
Jeffrey L. Linsky ◽  
Brian E. Wood ◽  
Seth Redfield

AbstractWe describe our method for measuring mass loss rates of F–M main sequence stars with high-resolution Lyman-α line profiles. Our diagnostic is the extra absorption on the blue side the interstellar hydrogen absorption produced by neutral hydrogen gas in the hydrogen walls of stars. For stars with low X-ray fluxes, the correlation of observed mass loss rate with X-ray surface flux and age predicts the solar wind mass flux between 700 Myr and the present.

2019 ◽  
Vol 486 (4) ◽  
pp. 4671-4685 ◽  
Author(s):  
Wageesh Mishra ◽  
Nandita Srivastava ◽  
Yuming Wang ◽  
Zavkiddin Mirtoshev ◽  
Jie Zhang ◽  
...  

ABSTRACT Similar to the Sun, other stars shed mass and magnetic flux via ubiquitous quasi-steady wind and episodic stellar coronal mass ejections (CMEs). We investigate the mass loss rate via solar wind and CMEs as a function of solar magnetic variability represented in terms of sunspot number and solar X-ray background luminosity. We estimate the contribution of CMEs to the total solar wind mass flux in the ecliptic and beyond, and its variation over different phases of the solar activity cycles. The study exploits the number of sunspots observed, coronagraphic observations of CMEs near the Sun by SOHO/LASCO, in situ observations of the solar wind at 1 AU by WIND, and GOES X-ray flux during solar cycles 23 and 24. We note that the X-ray background luminosity, occurrence rate of CMEs and ICMEs, solar wind mass flux, and associated mass loss rates from the Sun do not decrease as strongly as the sunspot number from the maximum of solar cycle 23 to the next maximum. Our study confirms a true physical increase in CME activity relative to the sunspot number in cycle 24. We show that the CME occurrence rate and associated mass loss rate can be better predicted by X-ray background luminosity than the sunspot number. The solar wind mass loss rate which is an order of magnitude more than the CME mass loss rate shows no obvious dependency on cyclic variation in sunspot number and solar X-ray background luminosity. These results have implications for the study of solar-type stars.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 450-451
Author(s):  
Vikram V. Dwarkadas

AbstractRed Supergiants (RSGs) have for decades been assumed to be the progenitors of Type IIP supernovae (SNe). They are expected to have dense winds with mass-loss rates up to 10−4 M⊙ yr−1. We have created a database of available X-ray lightcurves of SNe. Type IIP SNe are found to have the lowest X-ray luminosities among all classes, which is surprising given the high mass-loss rate winds expected from their red supergiant progenitors, and therefore the high density medium into which Type IIP SNe are expected to expand into. We show that the low X-ray luminosity sets a limit on the mass-loss rate of the progenitor star which can collapse to become a RSG, which is about 10−5 M⊙ yr−1. This in turn can be used to set a limit on the initial mass of a RSG star which can become a Type IIP progenitor, which is about 19 M⊙. This is consistent with the limit obtained via direct optical progenitor identification. Optically identified progenitors of Type IIP SNe are found to be RSGs with masses less than about 17 M⊙ (Smartt (2009)). We discuss the implications of this result for stellar evolution, theorize on the fate of RSG stars with initial mass > 19 M⊙, and discuss what type of SNe they will produce at the end of their lifetime.


1998 ◽  
Vol 11 (1) ◽  
pp. 367-367
Author(s):  
S.D. Van Dyk ◽  
M.J. Montes ◽  
K.W. Weiler ◽  
R.A. Sramek ◽  
N. Panagia

The radio emission from supernovae provides a direct probe of a supernova’s circumstellar environment, which presumably was established by mass-loss episodes in the late stages of the progenitor’s presupernova evolution. The observed synchrotron emission is generated by the SN shock interacting with the relatively high-density circumstellar medium which has been fully ionized and heated by the initial UV/X-ray flash. The study of radio supernovae therefore provides many clues to and constraints on stellar evolution. We will present the recent results on several cases, including SN 1980K, whose recent abrupt decline provides us with a stringent constraint on the progenitor’s initial mass; SN 1993J, for which the profile of the wind matter supports the picture of the progenitor’s evolution in an interacting binary system; and SN 1979C, where a clear change in presupernova mass-loss rate occurred about 104 years before explosion. Other examples, such as SNe 19941 and 1996cb, will also be discussed.


1989 ◽  
Vol 106 ◽  
pp. 339-347
Author(s):  
M. Jura

AbstractThe mass loss from evolved red giants is considered. It seems that red giants on the Asymptotic Giant Branch (AGB) are losing between 3 and 6 10-4 MΘ kpc-2 yr-1 in the solar neighborhood. If all the main sequence stars between 1 and 5 MΘ ultimately evolve into white dwarfs with masses of 0.7 MΘ the predicted mass loss rate in the solar neighborhood from these stars is 8 10-4 MΘ kpc-2 yr-1. Although there are still uncertainties, it appears that there is no strong disagreement between theory and observation. However, it could also be that we have not yet identified much of the source of the mass-loss from pre-white dwarf stars.


2003 ◽  
Vol 212 ◽  
pp. 218-219
Author(s):  
Julian M. Pittard ◽  
Michael F. Corcoran

We perform X-ray spectral fits to a recently obtained Chandra grating spectrum of η Carinae, one of the most massive and powerful stars in the Galaxy and which is strongly suspected to be a colliding wind binary system. The good fit that we obtain gives us further confidence in the binary hypothesis, and we find M ≈ 2.5 × 10–4 M⊙ yr–1 for the mass loss rate of η Car.


2004 ◽  
Vol 219 ◽  
pp. 587-598
Author(s):  
Shadia Rifai Habbal ◽  
Richard Woo

Identifying the regions of open magnetic structures in the corona, namely regions where field lines expand outwards into interplanetary space, is equivalent to establishing the origin of the solar wind at the Sun. A review of recent studies, based on the comparison of the distribution, as a function of latitude, of density and velocity in the inner corona and in interplanetary space, is presented. It is shown how, at solar minimum, this comparison leads to the unexpected result that the fast solar wind expands indiscriminately from a significant fraction of the solar surface, not limited to polar coronal holes, as has been believed for the past three decades. It is also shown how polarization measurements of coronal forbidden lines, which yield the direction of the coronal magnetic field, lend further support to this result. The implications of these findings are that a significant fraction of the solar magnetic field is primarily open, expanding almost radially into interplanetary space, carrying with it the imprint of the distribution of density in the corona, while the ‘closed’ structures contribute a small fraction to the overall filling factor of coronal density structures. Furthermore, the solar wind particle flux is found to be correlated with density, implying a higher mass loss rate from the higher density quiet Sun regions, and the likelihood of a solar cycle dependence in the mass loss rate, as the are of polar coronal holes decreases with increased solar activity.


2010 ◽  
Vol 6 (S272) ◽  
pp. 348-353 ◽  
Author(s):  
David H. Cohen ◽  
Emma E. Wollman ◽  
Maurice A. Leutenegger

AbstractX-rays give direct evidence of instabilities, time-variable structure, and shock heating in the winds of O stars. The observed broad X-ray emission lines provide information about the kinematics of shock-heated wind plasma, enabling us to test wind-shock models. And their shapes provide information about wind absorption, and thus about the wind mass-loss rates. Mass-loss rates determined from X-ray line profiles are not sensitive to density-squared clumping effects, and indicate mass-loss rate reductions of factors of 3 to 6 over traditional diagnostics that suffer from density-squared effects. Broad-band X-ray spectral energy distributions also provide mass-loss rate information via soft X-ray absorption signatures. In some cases, the degree of wind absorption is so high, that the hardening of the X-ray SED can be quite significant. We discuss these results as applied to the early O stars ζ Pup (O4 If), 9 Sgr (O4 V((f))), and HD 93129A (O2 If*).


2021 ◽  
Vol 162 (6) ◽  
pp. 287
Author(s):  
Lia Corrales ◽  
Sasikrishna Ravi ◽  
George W. King ◽  
Erin May ◽  
Emily Rauscher ◽  
...  

Abstract Short-wavelength exoplanet transit measurements have been used to probe mass loss in exoplanet atmospheres. We present the Swift-UVOT transit light curves for five hot Jupiters orbiting UV-bright F-type stars: XO-3, KELT-3, WASP-3, WASP-62, and HAT-P-6. We report one positive transit detection of XO-3b and one marginal detection of KELT-3b. We place upper limits on the remaining three transit depths. The planetary radii derived from the NUV transit depths of both potential detections are 50%–100% larger than their optical radius measurements. We examine the ratio R NUV/R opt for trends as a function of estimated mass-loss rate, which we derive from X-ray luminosity obtained from the Swift-XRT or, in the case of WASP-62, XMM-Newton. We find no correlation between the energy-limited photoevaporative mass-loss rate and the R NUV/R opt ratio. We also search for trends based on the equilibrium temperature of the hot Jupiters. We find a possible indication of a transition in the R NUV/R opt ratio around T eq = 1700 K, analogous to the trends found for NIR water features in transmission spectra. This might be explained by the formation of extended cloud decks with silicate particles ≤1 μm. We demonstrate that the Swift-UVOT filters could be sensitive to absorption from aerosols in exoplanet atmospheres.


1985 ◽  
Vol 87 ◽  
pp. 453-469
Author(s):  
G. Michaud

AbstractIn the absence of mass loss, diffusion leads to underabundances of He in main sequence stars. Because of a very strong observational link with Ap and He weak stars, it has however been suggested that diffusion is the explanation for the He rich stars of the upper main sequence. This requires a mass loss rate of 10−12 Mo yr−1 or slightly lower. The mass loss rate must decrease as Teff increases. Magnetic fields must apparently be involved to reduce the mass loss rate. Since this model predicts that the CNO abundances should be normal in the cooler He rich stars, it leads to a clear observational test. Detailed calculations should be made to confirm the importance of this test. The effects of separation in the wind, the atmosphere and the envelope are discussed to conclude that separation in the atmosphere is likely to be most important. The importance of diffusion for He rich white dwarfs and horizontal branch stars are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document