scholarly journals High-energy emission from galaxies: the star-formation/gamma-ray connection

2011 ◽  
Vol 7 (S284) ◽  
pp. 382-388
Author(s):  
Stefan Ohm ◽  
Jim Hinton

AbstractThe impact of non-thermal processes on the spectral energy distributions of galaxies can be dramatic, but such processes are often neglected in considerations of their structure and evolution. Particle acceleration associated with high mass star formation and AGN activity not only leads to very broad band (radio-γ-ray) emission, but may also produce very significant feedback effects on galaxies and their environment. The recent detections of starburst galaxies at GeV and TeV energies suggest that γ-ray instruments have now reached the critical level of sensitivity to probe the connection between particle acceleration and star-formation in galaxies. In this paper we will try to summarise this recent progress, put it into a multi-wavelength context and also discuss the prospects for more precise and sensitive γ-ray measurements with the upcoming CTA observatory.

2020 ◽  
Vol 493 (2) ◽  
pp. 2438-2451
Author(s):  
B Arsioli ◽  
Y-L Chang ◽  
B Musiimenta

ABSTRACT This paper presents the results of a γ-ray likelihood analysis over all the extreme and high synchrotron peak blazars (EHSP and HSP) from the 3HSP catalogue. We investigate 2013 multifrequency positions under the eyes of Fermi Large Area Telescope, considering 11 yr of observations in the energy range between 500 MeV and 500 GeV, which results in 1160 γ-ray signatures detected down to the TS=9 threshold. The detections include 235 additional sources concerning the Fermi Large Area Telescope Fourth Source Catalog (4FGL), all confirmed via high-energy TS (Test Statistic) maps, and represent an improvement of ∼25 per cent for the number of EHSP and HSP currently described in γ-rays. We build the γ-ray spectral energy distribution (SED) for all the 1160 2BIGB sources, plot the corresponding γ-ray logN−logS, and measure their total contribution to the extragalactic gamma-ray background, which reaches up to ∼33 per cent at 100 GeV. Also, we show that the γ-ray detectability improves according to the synchrotron peak flux as represented by the figure of merit parameter, and note that the search for TeV peaked blazars may benefit from considering HSP and EHSP as a whole, instead of EHSPs only. The 2BIGB acronym stands for ‘Second Brazil-ICRANet Gamma-ray Blazars’ catalogue, and all the broad-band models and SED data points will be available on public data repositories (OpenUniverse, GitHub, and Brazilian Science Data Center-BSDC).


2020 ◽  
Vol 644 ◽  
pp. A82
Author(s):  
O. Miettinen

Context. Infrared dark clouds (IRDCs) can be the birth sites of high-mass stars, and hence determining the physical properties of dense cores in IRDCs is useful to constrain the initial conditions and theoretical models of high-mass star formation. Aims. We aim to determine the physical properties of dense cores in the filamentary Seahorse IRDC G304.74+01.32. Methods. We used data from the Wide-field Infrared Survey Explorer (WISE), Infrared Astronomical Satellite (IRAS), and Herschel in conjuction with our previous 350 and 870 μm observations with the Submillimetre APEX Bolometer Camera (SABOCA) and Large APEX BOlometer CAmera, and constructed the far-IR to submillimetre spectral energy distributions (SEDs) of the cores. The SEDs were fitted using single or two-temperature modified blackbody emission curves to derive the dust temperatures, masses, and luminosities of the cores. Results. For the 12 analysed cores, which include two IR dark cores (no WISE counterpart), nine IR bright cores, and one H II region, the mean dust temperature of the cold (warm) component, the mass, luminosity, H2 number density, and surface density were derived to be 13.3 ± 1.4 K (47.0 ± 5.0 K), 113 ± 29 M⊙, 192 ± 94 L⊙, (4.3 ± 1.2) × 105 cm−3, and 0.77 ± 0.19 g cm−3, respectively. The H II region IRAS 13039-6108a was found to be the most luminous source in our sample ((1.1 ± 0.4) × 103 L⊙). All the cores were found to be gravitationally bound (i.e. the virial parameter αvir < 2). Two out of the nine analysed IR bright cores (22%) were found to follow an accretion luminosity track under the assumptions that the mass accretion rate is 10−5 M⊙ yr−1, the stellar mass is 10% of the parent core mass, and the radius of the central star is 5 R⊙. Most of the remaing ten cores were found to lie within 1 dex below this accretion luminosity track. Seven out of 12 of the analysed cores (58%) were found to lie above the mass-radius thresholds of high-mass star formation proposed in the literature. The surface densities of Σ > 0.4 g cm−3 derived for these seven cores also exceed the corresponding threshold for high-mass star formation. Five of the analysed cores (42%) show evidence of fragmentation into two components in the SABOCA 350 μm image. Conclusions. In addition to the H II region source IRAS 13039-6108a, some of the other cores in Seahorse also appear to be capable of giving birth to high-mass stars. The 22 μm dark core SMM 9 is likely to be the youngest source in our sample that has the potential to form a high-mass star (96 ± 23 M⊙ within a radius of ~0.1 pc). The dense core population in the Seahorse IRDC has comparable average properties to the cores in the well-studied Snake IRDC G11.11-0.12 (e.g. Tdust and L agree within a factor of ~1.8); furthermore, the Seahorse, which lies ~60 pc above the Galactic plane, appears to be a smaller (e.g. three times shorter in projection, ~100 times less massive) version of the Snake. The Seahorse core fragmentation mechanisms appear to be heterogenous, including cases of both thermal and non-thermal Jeans instability. High-resolution follow-up studies are required to address the fragmented cores’ genuine potential of forming high-mass stars.


2020 ◽  
Vol 496 (3) ◽  
pp. 3912-3928
Author(s):  
MAGIC Collaboration: V A Acciari ◽  
S Ansoldi ◽  
L A Antonelli ◽  
A Arbet Engels ◽  
A Babić ◽  
...  

ABSTRACT Extreme high-frequency BL Lacs (EHBL) feature their synchrotron peak of the broad-band spectral energy distribution (SED) at νs ≥ 1017 Hz. The BL Lac object 1ES 2344+514 was included in the EHBL family because of its impressive shift of the synchrotron peak in 1996. During the following years, the source appeared to be in a low state without showing any extreme behaviours. In 2016 August, 1ES 2344+514 was detected with the ground-based γ-ray telescope FACT during a high γ-ray state, triggering multiwavelength (MWL) observations. We studied the MWL light curves of 1ES 2344+514 during the 2016 flaring state, using data from radio to very-high-energy (VHE) γ-rays taken with OVRO, KAIT, KVA, NOT, some telescopes of the GASP-WEBT collaboration at the Teide, Crimean, and St. Petersburg observatories, Swift-UVOT, Swift-XRT, Fermi-LAT, FACT, and MAGIC. With simultaneous observations of the flare, we built the broad-band SED and studied it in the framework of a leptonic and a hadronic model. The VHE γ-ray observations show a flux level of 55 per cent of the Crab Nebula flux above 300 GeV, similar to the historical maximum of 1995. The combination of MAGIC and Fermi-LAT spectra provides an unprecedented characterization of the inverse-Compton peak for this object during a flaring episode. The Γ index of the intrinsic spectrum in the VHE γ-ray band is 2.04 ± 0.12stat ± 0.15sys. We find the source in an extreme state with a shift of the position of the synchrotron peak to frequencies above or equal to 1018 Hz.


2003 ◽  
Vol 212 ◽  
pp. 150-151
Author(s):  
Paula Benaglia ◽  
Gustavo E. Romero

In the colliding wind region of early-type binaries, electrons can be accelerated up to relativistic energies, as demonstrated by the detection of non-thermal radio emission from several WR+OB systems. The particle acceleration region is exposed to strong photon fields, and inverse-Compton cooling of the electrons could result in a substantial high-energy non-thermal flux. We present here preliminary results of a study of the binaries WR 140, WR 146, and WR 147 in the light of recent radio and γ-ray observations. We show that under reasonable assumptions WR 140 can produce the γ-ray flux from the GRO-egret source 3EG J 2022+4317. WR 146 and WR 147 are below the detection threshold.


2020 ◽  
Vol 499 (3) ◽  
pp. 4325-4369
Author(s):  
Andrés F Ramos Padilla ◽  
M L N Ashby ◽  
Howard A Smith ◽  
Juan R Martínez-Galarza ◽  
Aliza G Beverage ◽  
...  

ABSTRACT Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a spectral energy distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer, and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool cigale, we derive the physical conditions of the interstellar medium, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGN) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about $10^{10} \,\rm {M}_{*}$ are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGN–[Ne v]/[Ne ii] plane. We identify a modest correlation between fAGN and mergers in their later stages.


2019 ◽  
Vol 486 (2) ◽  
pp. 1741-1762 ◽  
Author(s):  
L Foffano ◽  
E Prandini ◽  
A Franceschini ◽  
S Paiano

ABSTRACT Extreme high-energy peaked BL Lac objects (EHBLs) are an emerging class of blazars with exceptional spectral properties. The non-thermal emission of the relativistic jet peaks in the spectral energy distribution (SED) plot with the synchrotron emission in X-rays and with the gamma-ray emission in the TeV range or above. These high photon energies may represent a challenge for the standard modelling of these sources. They are important for the implications on the indirect measurements of the extragalactic background light, the intergalactic magnetic field estimate, and the possible origin of extragalactic high-energy neutrinos. In this paper, we perform a comparative study of the multiwavelength spectra of 32 EHBL objects detected by the Swift-BAT telescope in the hard X-ray band and by the Fermi-LAT telescope in the high-energy gamma-ray band. The source sample presents uniform spectral properties in the broad-band SEDs, except for the TeV gamma-ray band where an interesting bimodality seems to emerge. This suggests that the EHBL class is not homogeneous, and a possible subclassification of the EHBLs may be unveiled. Furthermore, in order to increase the number of EHBLs and settle their statistics, we discuss the potential detectability of the 14 currently TeV gamma-ray undetected sources in our sample by the Cherenkov telescopes.


2020 ◽  
Vol 639 ◽  
pp. A93
Author(s):  
M. Figueira ◽  
A. Zavagno ◽  
L. Bronfman ◽  
D. Russeil ◽  
R. Finger ◽  
...  

Context. The edges of ionized (H II) regions are important sites for the formation of (high-mass) stars. Indeed, at least 30% of the Galactic high-mass-star formation is observed there. The radiative and compressive impact of the H II region could induce star formation at the border following different mechanisms such as the collect and collapse or the radiation-driven implosion (RDI) models and change their properties. Aims. We aim to study the properties of two zones located in the photo dissociation region (PDR) of the Galactic H II region RCW 120 and discuss them as a function of the physical conditions and young star contents found in both clumps. Methods. Using the APEX telescope, we mapped two regions of size 1.5′ × 1.5′ toward the most massive clump of RCW 120 hosting young massive sources and toward a clump showing a protrusion inside the H II region and hosting more evolved low-mass sources. The 12CO (J = 3−2), 13CO (J = 3−2) and C18O (J = 3−2) lines observed, together with Herschel data, are used to derive the properties and dynamics of these clumps. We discuss their relation with the hosted star formation. Results. Assuming local thermodynamic equilibrium, the increase of velocity dispersion and Tex are found toward the center of the maps, where star-formation is observed with Herschel. Furthermore, both regions show supersonic Mach numbers (7 and 17 in average). No substantial information has been gathered about the impact of far ultraviolet radiation on C18O photodissociation at the edges of RCW 120. The fragmentation time needed for CC to be at work is equivalent to the dynamical age of RCW 120 and the properties of region B are in agreement with bright-rimmed clouds. Conclusions. Although conclusions from this fragmentation model should be taken with caution, it strengthens the fact that, together with evidence of compression, CC might be at work at the edges of RCW 120. Additionally, the clump located at the eastern part of the PDR is a good candidate pre-existing clump where star-formation may be induced by the RDI mechanism.


2019 ◽  
Vol 628 ◽  
pp. A27 ◽  
Author(s):  
M. Bonfand ◽  
A. Belloche ◽  
R. T. Garrod ◽  
K. M. Menten ◽  
E. Willis ◽  
...  

Context. As the number of complex organic molecules (COMs) detected in the interstellar medium increases, it becomes even more important to place meaningful constraints on the origins and formation pathways of such chemical species. The molecular cloud Sagittarius B2(N) is host to several hot molecular cores in the early stage of star formation, where a great variety of COMs are detected in the gas phase. Given its exposure to the extreme conditions of the Galactic center (GC) region, Sgr B2(N) is one of the best targets to study the impact of environmental conditions on the production of COMs. Aims. Our main goal is to characterize the physico-chemical evolution of Sgr B2(N)’s sources in order to explain their chemical differences and constrain their environmental conditions. Methods. The chemical composition of Sgr B2(N)’s hot cores, N2, N3, N4, and N5 is derived by modeling their 3 mm emission spectra extracted from the Exploring Molecular Complexity with ALMA (EMoCA) imaging spectral line survey performed with the Atacama Large Millimeter/submillimeter Array (ALMA). We derived the density distribution in the envelope of the sources based on the masses computed from the ALMA dust continuum emission maps. We used the radiative transfer code RADMC-3D to compute temperature profiles and inferred the current luminosity of the sources based on the COM rotational temperatures derived from population diagrams. We used published results of 3D radiation-magnetohydrodynamical (RMHD) simulations of high-mass star formation to estimate the time evolution of the source properties. We employed the astrochemical code MAGICKAL to compute time-dependent chemical abundances in the sources and to investigate how physical properties and environmental conditions influence the production of COMs. Results. The analysis of the abundances of 11 COMs detected toward Sgr B2(N2-N5) reveals that N3 and N5 share a similar chemical composition while N2 differs significantly from the other sources. We estimate the current luminosities of N2, N3, N4, and N5 to be 2.6 × 105 L⊙, 4.5 × 104 L⊙, 3.9 × 105 L⊙, and 2.8 × 105 L⊙, respectively. We find that astrochemical models with a cosmic-ray ionization rate of 7 × 10−16 s−1 best reproduce the abundances with respect to methanol of ten COMs observed toward Sgr B2(N2-N5). We also show that COMs still form efficiently on dust grains with minimum dust temperatures in the prestellar phase as high as 15 K, but that minimum temperatures higher than 25 K are excluded. Conclusions. The chemical evolution of Sgr B2(N2-N5) strongly depends on their physical history. A more realistic description of the hot cores’ physical evolution requires a more rigorous treatment with RMHD simulations tailored to each hot core.


2018 ◽  
Vol 618 ◽  
pp. A146 ◽  
Author(s):  
E. Molina ◽  
V. Bosch-Ramon

Context. The stellar wind in high-mass microquasars should interact with the jet. This interaction, coupled with orbital motion, is expected to make the jet follow a helical, nonballistic trajectory. The jet energy dissipated by this interaction, through shocks for example, could lead to nonthermal activity on scales significantly larger than the system size. Aims. We calculate the broadband emission from a jet affected by the impact of the stellar wind and orbital motion in a high-mass microquasar. Methods. We employ a prescription for the helical trajectory of a jet in a system with a circular orbit. Subsequently, assuming electron acceleration at the onset of the helical jet region, we compute the spatial and energy distribution of these electrons, and their synchrotron and inverse Compton emission including gamma-ray absorption effects. Results. For typical source parameters, significant radio, X- and gamma-ray luminosities are predicted. The scales on which the emission is produced may reduce, but not erase, orbital variability of the inverse Compton emission. The wind and orbital effects on the radio emission morphology could be studied using very long baseline interferometric techniques. Conclusions. We predict significant broadband emission, modulated by orbital motion, from a helical jet in a high-mass microquasar. This emission may be hard to disentangle from radiation of the binary itself, although the light curve features, extended radio emission, and a moderate opacity to very high-energy gamma rays, could help to identify the contribution from an extended (helical) jet region.


2003 ◽  
Vol 12 (05) ◽  
pp. 781-789 ◽  
Author(s):  
G. Z. XIE ◽  
S. X. DING ◽  
H. DAI ◽  
E. W. LIANG ◽  
H. T. LIU

In this paper, we introduce a new composite spectral indices αγxγ = αxγ - αγ, and prove [Formula: see text], that means αγxγ is intrinsic. We plot a αxox - αγxγ diagram for 25 Gev γ-ray blazars for which αx and αγ have been provided in the literature, where αxox = αox - αx which was introduced by Sambruna et al. (1996) and proved that it is intrinsic by our previous paper (Xie et al. 2001). Using this new composite color–color (αxox - αγxγ) diagram, we investigated the nature of the HBLs–LBLs relationship, and the BL Lacs–FSRQs relationship, in high-energy emission. The results show that the spectral energy distributions of three subclasses of Gev γ-ray loud blazars are different, but essentially continuous: HBLs and FSRQs occupy separated regions while LBLs bridge the gap between HBLs and FSRQs. The results are consistent with that derived from a low energy color–color(αxox - αoro) diagram by Sambruna et al. (1996) and Xie et al. (2001). However, on the αox - αxγ diagram, FSRQs, LBLs and HBLs occupy same region. Because both αγxγ and αxox are intrinsic, thus, the new connection among HBLs, LBLs and FSRQs obtained by us is intrinsic.


Sign in / Sign up

Export Citation Format

Share Document