scholarly journals Gamma-ray production in selected Wolf-Rayet binaries

2003 ◽  
Vol 212 ◽  
pp. 150-151
Author(s):  
Paula Benaglia ◽  
Gustavo E. Romero

In the colliding wind region of early-type binaries, electrons can be accelerated up to relativistic energies, as demonstrated by the detection of non-thermal radio emission from several WR+OB systems. The particle acceleration region is exposed to strong photon fields, and inverse-Compton cooling of the electrons could result in a substantial high-energy non-thermal flux. We present here preliminary results of a study of the binaries WR 140, WR 146, and WR 147 in the light of recent radio and γ-ray observations. We show that under reasonable assumptions WR 140 can produce the γ-ray flux from the GRO-egret source 3EG J 2022+4317. WR 146 and WR 147 are below the detection threshold.

1996 ◽  
Vol 175 ◽  
pp. 287-288
Author(s):  
C.M. Raiteri ◽  
G. Ghisellini ◽  
M. Villata ◽  
G. DE FRANCESCO ◽  
S. Bosio ◽  
...  

The observations by the Compton Gamma Ray Observatory (CGRO) have shown that highly variable and radio-loud quasars emit a significant fraction of their energy in the γ band. According to the Inverse Compton model, the γ-ray emission is due to upscattering of soft (IR-optical-UV) photons by high energy particles. Optical monitoring is thus of great value in providing information on the mechanisms that rule the production of the seed photons for the γ-ray radiation and on the γ-ray emission itself. In particular, detection of variability correlations between optical and γ-ray emissions would be a crucial test for the theoretical predictions.


2011 ◽  
Vol 7 (S284) ◽  
pp. 382-388
Author(s):  
Stefan Ohm ◽  
Jim Hinton

AbstractThe impact of non-thermal processes on the spectral energy distributions of galaxies can be dramatic, but such processes are often neglected in considerations of their structure and evolution. Particle acceleration associated with high mass star formation and AGN activity not only leads to very broad band (radio-γ-ray) emission, but may also produce very significant feedback effects on galaxies and their environment. The recent detections of starburst galaxies at GeV and TeV energies suggest that γ-ray instruments have now reached the critical level of sensitivity to probe the connection between particle acceleration and star-formation in galaxies. In this paper we will try to summarise this recent progress, put it into a multi-wavelength context and also discuss the prospects for more precise and sensitive γ-ray measurements with the upcoming CTA observatory.


2019 ◽  
Vol 627 ◽  
pp. A22 ◽  
Author(s):  
Z. Osmanov ◽  
F. M. Rieger

Context. The recent detection of pulsed γ-ray emission from the Vela pulsar in the ∼10 to 100 GeV range by H.E.S.S. promises important potential to probe into the very high energy (VHE) radiation mechanisms of pulsars. Aims. A combined analysis of H.E.S.S. and Fermi-LAT data suggests that the leading wing of the P2 peak shows a new, hard gamma-ray component (with photon index as hard as Γ ∼ 3.5), setting in above 50 GeV and extending beyond 100 GeV. We study these findings in the context of rotationally driven (centrifugal) particle acceleration. Methods. We analyze achievable particle energies in the magnetosphere of the Vela pulsar and calculate the resultant emission properties. Results. Inverse Compton up-scattering of thermal photons from the surface of the star is shown to lead a pulsed VHE contribution reaching into the TeV regime with spectral characteristics compatible with current findings. If confirmed by further observations this could be the second case where rotationally driven processes turn out to be important to understand the VHE emission in young pulsars.


1996 ◽  
Vol 175 ◽  
pp. 421-422 ◽  
Author(s):  
Oliver Dreissigacker

We explain the overall continuous Grazar (Gamma Ray Blazar) spectrum from the synchrotron turnover to the EGRET GeV detections by means of Comptonization in the parsec scale jet's substructures.While making use of the constraints on the synchrotron spectrum and other measurable quantities, no exotic particle acceleration is needed to achieve the high energy output.We show, that the “Lighthouse Model” of blobs of relativistic electrons, travelling with the jet plasma at relativistic speeds, produce both, correct timescales and shapes for the lightcurve, and correct ratios and slopes of the synchrotron, X-ray and γ-ray branches.


1997 ◽  
Vol 170 ◽  
pp. 22-24 ◽  
Author(s):  
Seth. W. Digel ◽  
Stanley D. Hunter ◽  
Reshmi Mukherjee ◽  
Eugéne J. de Geus ◽  
Isabelle A. Grenier ◽  
...  

EGRET, the high-energy γ-ray telescope on the Compton Gamma-Ray Observatory, has the sensitivity, angular resolution, and background rejection necessary to study diffuse γ-ray emission from the interstellar medium (ISM). High-energy γ rays produced in cosmic-ray (CR) interactions in the ISM can be used to determine the CR density and calibrate the CO line as a tracer of molecular mass. Dominant production mechanisms for γ rays of energies ∼30 MeV–30 GeV are the decay of pions produced in collisions of CR protons with ambient matter and Bremsstrahlung scattering of CR electrons.


2013 ◽  
Vol 9 (S296) ◽  
pp. 295-299
Author(s):  
Marie-Hélène Grondin ◽  
John W. Hewitt ◽  
Marianne Lemoine-Goumard ◽  
Thierry Reposeur ◽  

AbstractThe supernova remnant (SNR) Puppis A (aka G260.4-3.4) is a middle-aged supernova remnant, which displays increasing X-ray surface brightness from West to East corresponding to an increasing density of the ambient interstellar medium at the Eastern and Northern shell. The dense IR photon field and the high ambient density around the remnant make it an ideal case to study in γ-rays. Gamma-ray studies based on three years of observations with the Large Area Telescope (LAT) aboard Fermi have revealed the high energy gamma-ray emission from SNR Puppis A. The γ-ray emission from the remnant is spatially extended, and nicely matches the radio and X-ray morphologies. Its γ-ray spectrum is well described by a simple power law with an index of ~2.1, and it is among the faintest supernova remnants yet detected at GeV energies. To constrain the relativistic electron population, seven years of Wilkinson Microwave Anisotropy Probe (WMAP) data were also analyzed, and enabled to extend the radio spectrum up to 93 GHz. The results obtained in the radio and γ-ray domains are described in detail, as well as the possible origins of the high energy γ-ray emission (Bremsstrahlung, Inverse Compton scattering by electrons or decay of neutral pions produced by proton interactions).


2020 ◽  
Vol 496 (1) ◽  
pp. 974-986 ◽  
Author(s):  
H Zhang ◽  
I M Christie ◽  
M Petropoulou ◽  
J M Rueda-Becerril ◽  
D Giannios

ABSTRACT The afterglow emission from gamma-ray bursts (GRBs) is believed to originate from a relativistic blast wave driven into the circumburst medium. Although the afterglow emission from radio up to X-ray frequencies is thought to originate from synchrotron radiation emitted by relativistic, non-thermal electrons accelerated by the blast wave, the origin of the emission at high energies (HE; ≳GeV) remains uncertain. The recent detection of sub-TeV emission from GRB 190114C by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC) raises further debate on what powers the very high energy (VHE; ≳300 GeV) emission. Here, we explore the inverse Compton scenario as a candidate for the HE and VHE emissions, considering two sources of seed photons for scattering: synchrotron photons from the blast wave (synchrotron self-Compton or SSC) and isotropic photon fields external to the blast wave (external Compton). For each case, we compute the multiwavelength afterglow spectra and light curves. We find that SSC will dominate particle cooling and the GeV emission, unless a dense ambient infrared photon field, typical of star-forming regions, is present. Additionally, considering the extragalactic background light attenuation, we discuss the detectability of VHE afterglows by existing and future gamma-ray instruments for a wide range of model parameters. Studying GRB 190114C, we find that its afterglow emission in the Fermi-Large Area Telescope (LAT) band is synchrotron dominated. The late-time Fermi-LAT measurement (i.e. t ∼ 104 s), and the MAGIC observation also set an upper limit on the energy density of a putative external infrared photon field (i.e. ${\lesssim} 3\times 10^{-9}\, {\rm erg\, cm^{-3}}$), making the inverse Compton dominant in the sub-TeV energies.


2020 ◽  
Vol 497 (2) ◽  
pp. 2455-2468
Author(s):  
Michael W Toomey ◽  
Foteini Oikonomou ◽  
Kohta Murase

ABSTRACT We present a search for high-energy γ-ray emission from 566 Active Galactic Nuclei at redshift z > 0.2, from the 2WHSP catalogue of high-synchrotron peaked BL Lac objects with 8 yr of Fermi-LAT data. We focus on a redshift range where electromagnetic cascade emission induced by ultra-high-energy cosmic rays can be distinguished from leptonic emission based on the spectral properties of the sources. Our analysis leads to the detection of 160 sources above ≈5σ (TS ≥25) in the 1–300 GeV energy range. By discriminating significant sources based on their γ-ray fluxes, variability properties, and photon index in the Fermi-LAT energy range, and modelling the expected hadronic signal in the TeV regime, we select a list of promising sources as potential candidate ultra-high-energy cosmic ray emitters for follow-up observations by Imaging Atmospheric Cherenkov Telescopes.


1992 ◽  
Vol 128 ◽  
pp. 207-208
Author(s):  
S. V. Bogovalov ◽  
YU. D. Kotov

AbstractSuper-hard γ-ray radiation spectra have been calculated. This radiation is generated near the velocity-of-light cylinder through the process of inverse-Compton scattering of relativistic electrons by thermal photons radiated by a neutron star. These calculations have been compared with observations of the Crab and Vela pulsars at 1000-GeV γ-ray energies. A correlation between γ-ray flares and those in soft (Ex ≃ lkeV) X-rays are predicted.


1994 ◽  
Vol 142 ◽  
pp. 707-711
Author(s):  
H. Aurass ◽  
A. Hofmann ◽  
E. Rieger

AbstractVector magnetogram data and Hα pictures together with data published by Chupp et al. lead us to conjecture that in the presented case a contact between the rising two-ribbon flare current sheet and a coronal loop connecting two nearby plage regions initiates efficient high-energy γ-ray emission.Subject headings: Sun: corona — Sun: flares — Sun: X-rays, gamma rays


Sign in / Sign up

Export Citation Format

Share Document