scholarly journals GLMP 160 – the first [WR] star in a binary

2011 ◽  
Vol 7 (S283) ◽  
pp. 382-383
Author(s):  
Marcin Hajduk ◽  
Peter A. M. van Hoof ◽  
Albert A. Zijlstra

AbstractWe discuss the results of the search for [WR] central stars in binary systems. GLMP 160 is the first [WR] central star in a binary system known. We analyze photometry, spectroscopy and imaging of this system.

2003 ◽  
Vol 209 ◽  
pp. 541-542 ◽  
Author(s):  
Aubrie McLean ◽  
Martín A. Guerrero ◽  
Robert A. Gruendl ◽  
You-Hua Chu

The origin of the wide range of morphologies observed in planetary nebulae (PNe) is not well established. The influence of a binary companion of the central star can naturally explain this variety of morphologies, but very few PNe have known binary central stars. The evolution of the binary system with mass loss may result in the displacement of the central star from the nebular center. The large sample of PNe observed by HST is being used to search for de-centered central stars. Preliminary results indicate that the occurrence of de-centered central stars is widespread among all morphological types of PNe.


2003 ◽  
Vol 209 ◽  
pp. 233-233
Author(s):  
Katrina Exter ◽  
Don Pollacco

We report on a study of 3 post common-envelope binary systems; EC 11575-1845, V644 Cas (the central star of the PN HFG 1), and VW Pyx (the central star of K 1–2). These 3 have similar photometric and spectroscopic characteristics. Emission lines from the heated face of the cool star move with different velocities, and the H I lines are very broad with deep absorption component(s) visible at all phases.


1993 ◽  
Vol 155 ◽  
pp. 480-480
Author(s):  
C.Y. Zhang ◽  
S. Kwok

Making use of the results from recent infrared and radio surveys of planetary nebulae, we have selected 431 nebulae to form a sample where a number of distance-independent parameters (e.g., Tb, Td, I60μm and IRE) can be constructed. In addition, we also made use of other distance-independent parameters ne and T∗ where recent measurements are available. We have investigated the relationships among these parameters in the context of a coupled evolution model of the nebula and the central star. We find that most of the observed data in fact lie within the area covered by the model tracks, therefore lending strong support to the correctness of the model. Most interestingly, we find that the evolutionary tracks for nebulae with central stars of different core masses can be separated in a Tb-T∗ plane. This implies that the core masses and ages of the central stars can be determined completely independent of distance assumptions. The core masses and ages have been obtained for 302 central stars with previously determined central-star temperatures. We find that the mass distribution of the central stars strongly peaks at 0.6 M⊙, with 66% of the sample having masses <0.64 MM⊙. The luminosities of the central stars are then derived from their positions in the HR diagram according to their core masses and central star temperatures. If this method of mass (and luminosity) determination turns out to be accurate, we can bypass the extremely unreliable estimates for distances, and will be able to derive other physical properties of planetary nebulae.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


2021 ◽  
Vol 23 (15) ◽  
pp. 9211-9217
Author(s):  
Guannan Qu ◽  
Rasheed Bilal ◽  
Minsi Xin ◽  
Zhong Lv ◽  
Guangyong Jin ◽  
...  

Hydrogen bond generated between DMSO and benzene binary system induced changes in the Raman properties during phase transition.


2018 ◽  
Vol 619 ◽  
pp. A84 ◽  
Author(s):  
Henri M. J. Boffin ◽  
David Jones ◽  
Roger Wesson ◽  
Yuri Beletsky ◽  
Brent Miszalski ◽  
...  

Bipolar planetary nebulae (PNe) are thought to result from binary star interactions and, indeed, tens of binary central stars of PNe have been found, in particular using photometric time-series that allow for the detection of post-common envelope systems. Using photometry at the NTT in La Silla we have studied the bright object close to the centre of PN M 3-2 and found it to be an eclipsing binary with an orbital period of 1.88 days. However, the components of the binary appear to be two A or F stars, of almost equal mass, and are therefore too cold to be the source of ionisation of the nebula. Using deep images of the central star obtained in good seeing conditions, we confirm a previous result that the central star is more likely much fainter, located 2″ away from the bright star. The eclipsing binary is thus a chance alignment on top of the planetary nebula. We also studied the nebular abundance and confirm it to be a Type I PN.


1997 ◽  
Vol 12 (12) ◽  
pp. 3254-3259 ◽  
Author(s):  
J. Font ◽  
J. Muntasell ◽  
E. Cesari ◽  
J. Pons

Ball milling has been used as a solid-state mechanical alloying technique in two binary systems of plastic crystals: neopentylglycol/pentaglycerin (NPG/PG), showing a partial solubility in the ordered phase, and 2-amino-2-methyl-1,3-propanediol/tris(hydroxymethyl) (AMP/TRIS) whose immiscibility in this ordered solid phase is almost total. For the AMP/TRIS system the stable state at room temperature was reached by milling. Contrarily, for NPG/PG, DSC measurements reveal that an annealing period is required after milling. These results have been compared with those of the pentaglycerin/pentaerythritol (PG/PE) binary system, previously studied, whose miscibility is total at room temperature.


1968 ◽  
Vol 34 ◽  
pp. 324-328 ◽  
Author(s):  
L. Kohoutek

It is well known that the central star of the planetary nebula NGC 1514 (α50 = 4h06m.1, δ50 = +30°39'; lII= 165·5, bII = −15·3) differs from the other planetary nuclei by its high brightness (relative to the nebula) and late-type spectrum. The difference B∗ – Bn = 1m.9, and especially the A0-spectral type (Chopinet, 1963) are quite atypical for central stars. For these reasons we began a complex study of this object (Kohoutek, 1967; Kohoutek and Hekela, 1967) on the basis of the following sources of observational material: (1)Palomar Sky-Survey prints (Schmidt-camera, Palomar Observatory);(2)direct photographs in UBV system with the 2-m Schmidt-camera in Tautenburg (1962);(3)photoelectric UBV photometry with the 65-cm reflector at Ondřejov (1964–65),(4)(4) spectrograms of the central star using the 122-cm reflector in Asiago (1965), and relatively infrequent observational data from the older literature.


1989 ◽  
Vol 131 ◽  
pp. 355-355 ◽  
Author(s):  
D. J. Monk ◽  
M. J. Barlow ◽  
R. E. S. Clegg

AAT and IUE spectra of thirteen medium-excitation Magellanic Cloud planetary nebulae have been used to derive H I Zanstra effective temperatures and surface gravities for the central stars.


2020 ◽  
Vol 638 ◽  
pp. A103 ◽  
Author(s):  
N. Chornay ◽  
N. A. Walton

Context. Accurate distance measurements are fundamental to the study of planetary nebulae (PNe) but they have long been elusive. The most accurate and model-independent distance measurements for galactic PNe come from the trigonometric parallaxes of their central stars, which were only available for a few tens of objects prior to the Gaia mission. Aims. The accurate identification of PN central stars in the Gaia source catalogues is a critical prerequisite for leveraging the unprecedented scope and precision of the trigonometric parallaxes measured by Gaia. Our aim is to build a complete sample of PN central star detections with minimal contamination. Methods. We developed and applied an automated technique based on the likelihood ratio method to match candidate central stars in Gaia Data Release 2 (DR2) to known PNe in the Hong Kong/AAO/Strasbourg Hα PN catalogue, taking into account the BP – RP colours of the Gaia sources as well as their positional offsets from the nebula centres. These parameter distributions for both true central stars and background sources were inferred directly from the data. Results. We present a catalogue of over 1000 Gaia sources that our method has automatically identified as likely PN central stars. We demonstrate how the best matches enable us to trace nebula and central star evolution and to validate existing statistical distance scales, and we discuss the prospects for further refinement of the matching based on additional data. We also compare the accuracy of our catalogue to that of previous works.


Sign in / Sign up

Export Citation Format

Share Document