scholarly journals The distance to M31 in the era of precision cosmology

2012 ◽  
Vol 8 (S289) ◽  
pp. 235-235
Author(s):  
David Valls-Gabaud

AbstractWith the advent of precision cosmology, where distances out to redshifts z < 0.6 can be measured to 2% precision on the basis of baryon acoustic oscillations, it appears essential to establish an accurate calibration of the primary and secondary indicators of the cosmological distance ladder. Here we review recent attempts at anchoring M31 very accurately using three independent methods, and discuss in detail the systematics that affect each. Two double-lined eclipsing binaries yield a distance to M31 which is precise to 4%. New Bayesian methods have been applied to determine the tip of the red-giant branch, even in sparsely populated colour–magnitude diagrams, and provide unique insights in the context of a precise three-dimensional distribution of the satellites in the M31 system. Over 2500 Cepheids have been identified in large-scale multi-colour surveys of M31, the largest homogeneous data set thus far obtained for any galaxy. A subset of 68 with periods longer than 10 days have been observed with the Wide-Field Camera 3 on board the Hubble Space Telescope, yielding the tightest-ever near-infrared period–luminosity relation, with a mean distance error of 1%. Combined with other measurements, the distance to M31 is now measured with a precision of 3%. Forthcoming improvements, and their implications, are also discussed.

Author(s):  
Lior Shamir

Abstract Several recent observations using large data sets of galaxies showed non-random distribution of the spin directions of spiral galaxies, even when the galaxies are too far from each other to have gravitational interaction. Here, a data set of $\sim8.7\cdot10^3$ spiral galaxies imaged by Hubble Space Telescope (HST) is used to test and profile a possible asymmetry between galaxy spin directions. The asymmetry between galaxies with opposite spin directions is compared to the asymmetry of galaxies from the Sloan Digital Sky Survey. The two data sets contain different galaxies at different redshift ranges, and each data set was annotated using a different annotation method. The results show that both data sets show a similar asymmetry in the COSMOS field, which is covered by both telescopes. Fitting the asymmetry of the galaxies to cosine dependence shows a dipole axis with probabilities of $\sim2.8\sigma$ and $\sim7.38\sigma$ in HST and SDSS, respectively. The most likely dipole axis identified in the HST galaxies is at $(\alpha=78^{\rm o},\delta=47^{\rm o})$ and is well within the $1\sigma$ error range compared to the location of the most likely dipole axis in the SDSS galaxies with $z>0.15$ , identified at $(\alpha=71^{\rm o},\delta=61^{\rm o})$ .


2015 ◽  
Vol 24 (3) ◽  
Author(s):  
Guanwen Fang ◽  
Zhongyang Ma ◽  
Yang Chen ◽  
Xu Kong

AbstractUsing the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared high-resolution imaging from the 3D-HST survey, we analyze the morphology and structure of 502 ultraluminous infrared galaxies (ULIRGs;


2019 ◽  
Vol 219 (1) ◽  
pp. 129-147 ◽  
Author(s):  
M Lajaunie ◽  
J Gance ◽  
P Nevers ◽  
J-P Malet ◽  
C Bertrand ◽  
...  

SUMMARY This work presents a 3-D resistivity model of the Séchilienne unstable slope acquired with a network of portable resistivimeters in summer 2017. The instrumentation consisted in distributed measuring systems (IRIS Instruments FullWaver) to measure the spatial variations of electrical potential. 23 V-FullWaver receivers with two 50 m dipoles have been deployed over an area of circa 2 km2; the current was injected between a fixed remote electrode and a mobile electrode grounded successively at 30 locations. The data uncertainty has been evaluated in relation to the accuracy of electrodes positioning. The software package BERT (Boundless Electrical Resistivity Tomography) is used to invert the apparent resistivity and model the complex data set providing the first 3-D resistivity model of the slope. Stability tests and synthetic tests are realized to assess the interpretability of the inverted models. The 3-D resistivity model is interpreted up to a depth of 500 m; it allows identifying resistive and conductive anomalies related to the main geological and hydrogeological structures shaping the slope. The high fracturation of the rock in the most active zone of the landslide appears as a resistive anomaly where the highest resistivity values are located close to the faults. A major drain formed by a fault in the unaltered micaschist is identified through the discharge of a perched aquifer along the conductive zone producing an important conductive anomaly contrasting with the unaltered micaschist.


Geophysics ◽  
1991 ◽  
Vol 56 (4) ◽  
pp. 496-518 ◽  
Author(s):  
R. W. Groom ◽  
R. C. Bailey

An outcropping hemispherical inhomogeneity embedded in a two‐dimensional (2-D) earth is used to model the effects of three‐dimensional (3-D) near‐surface electromagnetic (EM) “static” distortion. Analytical solutions are first derived for the galvanic electric and magnetic scattering operators of the heterogeneity. To represent the local distortion by 3-D structures of fields which were produced by a large‐scale 2-D structure, these 3-D scattering operators are applied to 2-D electric and magnetic fields derived by numerical modeling to synthesize an MT data set. Synthetic noise is also included in the data. These synthetic data are used to study the parameters recovered by several published methods for decomposing or parameterizing the measured MT impedance tensor. The stability of these parameters in the presence of noise is also examined. The parameterizations studied include the conventional 2-D parameterization (Swift, 1967), Eggers’s (1982) and Spitz’s (1985) eigenstate formulations, LaTorraca et al.’s (1986) SVD decomposition, and the Groom and Bailey (1989) method designed specifically for 3-D galvanic electric scattering. The relationships between the impedance or eigenvalue estimates of each method and the true regional impedances are examined, as are the azimuthal (e.g., regional 2-D strike, eigenvector orientation and local strike) and ellipticity parameters. The 3-D structure causes the conventional 2-D estimates of impedances to be site‐dependent mixtures of the regional impedance responses, with the strike estimate being strongly determined by the orientation of the local current. For strong 3-D electric scattering, the local current polarization azimuth is mainly determined by the local 3-D scattering rather than the regional currents. There are strong similarities among the 2-D rotation estimates of impedance and the eigenvalue estimates of impedance both by Eggers’s and Spitz’s first parameterization as well as the characteristic values of LaTorraca et al. There are striking similarities among the conventional estimate of strike, the orientations given by the Eggers’s, Spitz’s (Q), and LaTorraca et al.’s decompositions, as well as the estimate of local current polarization azimuth given by Groom and Bailey. It was found that one of the ellipticities of Eggers, LaTorraca et al., and Spitz is identically zero for all sites and all periods, indicating that one eigenvalue or characteristic value is linearly polarized. There is strong evidence that this eigenvalue is related to the local current. For these three methods, the other ellipticity differs from zero only when there are significant differences in the phases of the regional 2-D impedances (i.e., strong 2-D inductive effects), implying the second ellipticity indicates a multidimensional inductive response. Spitz’s second parameterization (U), and the Groom and Bailey decomposition, were able to recover information regarding the actual regional 2-D strike and the separate character of the 2-D regional impedances. Unconstrained, both methods can suffer from noise in their ability to resolve structural information especially when the current distortion causes the impedance tensor to be approximately singular. The method of Groom and Bailey, designed specifically for quantifying the fit of the measured tensors to the physics of the parameterization, constraining a model, and resolving parameters, can recover much of the information in the two regional impedances and some information about the local structure.


2012 ◽  
Vol 8 (S289) ◽  
pp. 371-374
Author(s):  
Hyejeon Cho ◽  
Joseph B. Jensen ◽  
John P. Blakeslee ◽  
Brigham S. French ◽  
Hyun-chul Lee ◽  
...  

AbstractThe surface brightness fluctuation (SBF) method at near-infrared (NIR) wavelengths is a powerful tool for estimating distances to unresolved stellar systems with high precision. The IR channel of the Wide Field Camera 3 (WFC3), installed on board the Hubble Space Telescope (HST) in 2009, has a greater sensitivity and a wider field of view than the previous generation of HST IR instruments, making it much more efficient for measuring distances to early-type galaxies in the Local Volume. To take full advantage of its capabilities, we need to empirically calibrate the SBF distance method for WFC3's NIR passbands. We present the SBF measurements for the WFC3/IR F160W bandpass filter using observations of 16 early-type galaxies in the Fornax and Virgo Clusters. These have been combined with existing (g475–z850) color measurements from the Advanced Camera for Surveys Virgo and Fornax Cluster Surveys to derive a space-based H160-band SBF relation as a function of color. We have also compared the absolute SBF magnitudes to those predicted by evolutionary population synthesis models in order to study stellar population properties in the target galaxies.


Author(s):  
Clément Baruteau ◽  
Gaylor Wafflard-Fernandez ◽  
Romane Le Gal ◽  
Florian Debras ◽  
Andrés Carmona ◽  
...  

Abstract Predicting how a young planet shapes the gas and dust emission of its parent disc is key to constraining the presence of unseen planets in protoplanetary disc observations. We investigate the case of a 2 Jupiter mass planet that becomes eccentric after migrating into a low-density gas cavity in its parent disc. Two-dimensional hydrodynamical simulations are performed and post-processed by three-dimensional radiative transfer calculations. In our disc model, the planet eccentricity reaches ∼0.25, which induces strong asymmetries in the gas density inside the cavity. These asymmetries are enhanced by photodissociation and form large-scale asymmetries in 12CO J=3→2 integrated intensity maps. They are shown to be detectable for an angular resolution and a noise level similar to those achieved in ALMA observations. Furthermore, the planet eccentricity renders the gas inside the cavity eccentric, which manifests as a narrowing, stretching and twisting of iso-velocity contours in velocity maps of 12CO J=3→2. The planet eccentricity does not, however, give rise to detectable signatures in 13CO and C18O J=3→2 inside the cavity because of low column densities. Outside the cavity, the gas maintains near-circular orbits, and the vertically extended optically thick CO emission displays a four-lobed pattern in integrated intensity maps for disc inclinations $\gtrsim$ 30○. The lack of large and small dust inside the cavity in our model further implies that synthetic images of the continuum emission in the sub-millimetre, and of polarized scattered light in the near-infrared, do not show significant differences when the planet is eccentric or still circular inside the cavity.


2021 ◽  
Vol 923 (2) ◽  
pp. 156
Author(s):  
Y. Sophia Dai ◽  
Matthew M. Malkan ◽  
Harry I. Teplitz ◽  
Claudia Scarlata ◽  
Anahita Alavi ◽  
...  

Abstract We identify a sample of spectroscopically measured emission line galaxy (ELG) Pairs up to z = 1.6 from the Wide Field Camera 3 (WFC3) Infrared Spectroscopic Parallels (WISP) survey. WISP obtained slitless, near-infrared grism spectroscopy along with direct imaging in the J and H bands by observing in the pure-parallel mode with the WFC3 on board the Hubble Space Telescope. From our search of 419 WISP fields covering an area of ∼0.5 deg2, we find 413 ELG pair systems, mostly H α emitters. We then derive reliable star formation rates (SFRs) based on the attenuation-corrected H α fluxes. Compared to isolated galaxies, we find an average SFR enhancement of 40%–65%, which is stronger for major Pairs and Pairs with smaller velocity separations (Δ v < 300 km s−1). Based on the stacked spectra from various subsamples, we study the trends of emission line ratios in pairs, and find a general consistency with enhanced lower ionization lines. We study the pair fraction among ELGs, and find a marginally significant increase with redshift f ∝ (1 + z) α , where the power-law index α = 0.58 ± 0.17 from z ∼ 0.2 to ∼1.6. The fraction of active galactic nuclei is found to be the same in the ELG Pairs as compared to the isolated ELGs.


2018 ◽  
Vol 619 ◽  
pp. A171 ◽  
Author(s):  
M. Benisty ◽  
A. Juhász ◽  
S. Facchini ◽  
P. Pinilla ◽  
J. de Boer ◽  
...  

Context. While planet formation is thought to occur early in the history of a protoplanetary disk, the presence of planets embedded in disks, or of other processes driving disk evolution, might be traced from their imprints on the disk structure. Aims. We study the morphology of the disk around the T Tauri star HD 143006, located in the ~5–11 Myr-old Upper Sco region, and we look for signatures of the mechanisms driving its evolution. Methods. We observed HD 143006 in polarized scattered light with VLT/SPHERE at near-infrared (J-band, 1.2 μm) wavelengths, reaching an angular resolution of ~0.037′′ (~6 au). We obtained two datasets, one with a 145 mas diameter coronagraph, and the other without, enabling us to probe the disk structure down to an angular separation of ~0.06′′ (~10 au). Results. In our observations, the disk of HD 143006 is clearly resolved up to ~0.5′′ and shows a clear large-scale asymmetry with the eastern side brighter than the western side. We detect a number of additional features, including two gaps and a ring. The ring shows an overbrightness at a position angle (PA) of ~140°, extending over a range in position angle of ~60°, and two narrow dark regions. The two narrow dark lanes and the overall large-scale asymmetry are indicative of shadowing effects, likely due to a misaligned inner disk. We demonstrate the remarkable resemblance between the scattered light image of HD 143006 and a model prediction of a warped disk due to an inclined binary companion. The warped disk model, based on the hydrodynamic simulations combined with three-dimensional radiative transfer calculations, reproduces all major morphological features. However, it does not account for the observed overbrightness at PA ~ 140°. Conclusions. Shadows have been detected in several protoplanetary disks, suggesting that misalignment in disks is not uncommon. However, the origin of the misalignment is not clear. As-yet-undetected stellar or massive planetary companions could be responsible for them, and naturally account for the presence of depleted inner cavities.


2021 ◽  
Vol 162 (6) ◽  
pp. 298
Author(s):  
Gary J. Hill ◽  
Hanshin Lee ◽  
Phillip J. MacQueen ◽  
Andreas Kelz ◽  
Niv Drory ◽  
...  

Abstract The Hobby–Eberly Telescope (HET) Dark Energy Experiment (HETDEX) is undertaking a blind wide-field low-resolution spectroscopic survey of 540 deg2 of sky to identify and derive redshifts for a million Lyα-emitting galaxies in the redshift range 1.9 < z < 3.5. The ultimate goal is to measure the expansion rate of the universe at this epoch, to sharply constrain cosmological parameters and thus the nature of dark energy. A major multiyear Wide-Field Upgrade (WFU) of the HET was completed in 2016 that substantially increased the field of view to 22′ diameter and the pupil to 10 m, by replacing the optical corrector, tracker, and Prime Focus Instrument Package and by developing a new telescope control system. The new, wide-field HET now feeds the Visible Integral-field Replicable Unit Spectrograph (VIRUS), a new low-resolution integral-field spectrograph (LRS2), and the Habitable Zone Planet Finder, a precision near-infrared radial velocity spectrograph. VIRUS consists of 156 identical spectrographs fed by almost 35,000 fibers in 78 integral-field units arrayed at the focus of the upgraded HET. VIRUS operates in a bandpass of 3500−5500 Å with resolving power R ≃ 800. VIRUS is the first example of large-scale replication applied to instrumentation in optical astronomy to achieve spectroscopic surveys of very large areas of sky. This paper presents technical details of the HET WFU and VIRUS, as flowed down from the HETDEX science requirements, along with experience from commissioning this major telescope upgrade and the innovative instrumentation suite for HETDEX.


2020 ◽  
Vol 496 (2) ◽  
pp. 1638-1644 ◽  
Author(s):  
Thomas Mikal-Evans ◽  
David K Sing ◽  
Tiffany Kataria ◽  
Hannah R Wakeford ◽  
Nathan J Mayne ◽  
...  

ABSTRACT We present four new secondary eclipse observations for the ultrahot Jupiter WASP-121b acquired using the Hubble Space Telescope Wide Field Camera 3. The eclipse depth is measured to a median precision of 60 ppm across 28 spectroscopic channels spanning the 1.12–$1.64\, \mu {\rm m}$ wavelength range. This is a considerable improvement to the 90 ppm precision we achieved previously for a single eclipse observation using the same observing set-up. Combining these data with those reported at other wavelengths, a blackbody spectrum for WASP-121b is ruled out at &gt;6σ confidence and we confirm the interpretation of previous retrieval analyses that found the data are best explained by a dayside thermal inversion. The updated spectrum clearly resolves the water emission band at 1.3–$1.6\, \mu {\rm m}$, with higher signal-to-noise than before. It also fails to reproduce a bump in the spectrum at $1.25\, \mu {\rm m}$ derived from the first eclipse observation, which had tentatively been attributed to VO emission. We conclude that the latter was either a statistical fluctuation or a systematic artefact specific to the first eclipse data set.


Sign in / Sign up

Export Citation Format

Share Document