scholarly journals Structural and Morphological Properties of Ultraluminous Infrared Galaxies at 1 < z < 3

2015 ◽  
Vol 24 (3) ◽  
Author(s):  
Guanwen Fang ◽  
Zhongyang Ma ◽  
Yang Chen ◽  
Xu Kong

AbstractUsing the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) near-infrared high-resolution imaging from the 3D-HST survey, we analyze the morphology and structure of 502 ultraluminous infrared galaxies (ULIRGs;

2021 ◽  
Vol 41 (2) ◽  
pp. 0208002
Author(s):  
李江勇 Li Jiangyong ◽  
冯位欣 Feng Weixin ◽  
刘飞 Liu Fei ◽  
魏雅喆 Wei Yazhe ◽  
邵晓鹏 Shao Xiaopeng

2018 ◽  
Vol 864 (1) ◽  
pp. 20 ◽  
Author(s):  
Michihiro Takami ◽  
Guangwei Fu ◽  
Hauyu Baobab Liu ◽  
Jennifer L. Karr ◽  
Jun Hashimoto ◽  
...  

1994 ◽  
Vol 435 ◽  
pp. L75 ◽  
Author(s):  
R. Albrecht ◽  
C. Barbieri ◽  
H.-M. Adorf ◽  
G. Corrain ◽  
A. Gemmo ◽  
...  

2021 ◽  
Author(s):  
Zhenghao WANG ◽  
Yongling WU ◽  
Dongfeng QI ◽  
Wenhui YU ◽  
Hongyu ZHENG

Abstract Metalens has been shown to overcome the diffraction limit of conventional optical lenses to achieve sub-wavelength resolution. Due to its planar structure and lightweight, metalens has the potential applications in the manufacture of flat lenses for cameras and other high resolution imaging optics. However, currently reported metalenses have low focusing efficiencies: 26% - 68% in THz and GHz range, 1% - 91% in near infrared range (NIR), and 5% - 91.6% in the visible range. Far field imaging in the visible light is essential for use in camera and mobile phones, which requires a complex metalens structure with multi-layers of alternating metal and dielectric layers. Most of the reported metalenses work in a single wavelength, mainly due to the high dispersion characteristics of the diffractive metalenses. It remains a challenge to realize high resolution imaging for a wide wavelength band in particular in the visible range. In this review, we report the state-of-the-art in metalens design principle, types of nanoscale structures, and various fabrication processes. We introduce femtosecond laser direct writing based on two-photon polymerization as an emerging nanofabrication technology. We provide an overview of the optical performance of the recently-reported metalenses and elaborate the major research and engineering challenges and future prospects.


Author(s):  
Celalettin Yurdakul ◽  
Oguzhan Avci ◽  
Alex Matlock ◽  
Lei Tian ◽  
Ekmel Ozbay ◽  
...  

2021 ◽  
Vol 11 (14) ◽  
pp. 6261
Author(s):  
Andrew Rakich

Atmospheric dispersion produces spectral elongation in images formed by land-based astronomical telescopes, and this elongation increases as the telescope points away from the zenith. Atmospheric Dispersion Correctors (ADCs) produce compensating dispersion that can be adjusted to best cancel out the atmospheric effect. These correctors are generally of two basic types: Rotating Atmospheric Dispersion Correctors (R-ADCs), and Linear Atmospheric Dispersion Correctors (L-ADCs). Lately, a third type, the “Compensating Lateral ADC” (CL-ADC) has been proposed. None of these design approaches allow for large corrector systems (with elements greater than 1 m in diameter), in which the secondary spectrum is corrected to small residuals, of the order of tens’ of milliarcseconds. This paper describes a new type of large corrector (>1 m diameter elements), which can achieve the correction of the secondary spectrum to the order of 10 milliarcseconds. This correction is achieved by combining the R-ADC and CL-ADC approaches to dispersion correction. Only glass types readily available in metre diameters are required.


Sign in / Sign up

Export Citation Format

Share Document