scholarly journals Variational approach for rotating-stellar evolution in Lagrange scheme

2014 ◽  
Vol 9 (S307) ◽  
pp. 150-151
Author(s):  
Nobutoshi Yasutake ◽  
Shoichi Yamada

AbstractWe have developed an entirely new formulation to obtain self-gravitating, axisymmetric configurations in permanent rotation. It is based on the Lagrangian variational principle and, as a consequence, will allow us to apply it to stellar evolution calculations rather easily. We adopt a Monte Carlo technique, which is analogous to those employed in other fields, e.g. nuclear physics, in minimizing the energy functional. We also present the analogies between the study on rotating stellar configurations and the one on deformed nuclei. Possible applications are not limited to main sequence stars but will be extended to e.g. compact stars, proto-stars and planets. We believe that our formulation will be a major break-through then.

1998 ◽  
Vol 11 (1) ◽  
pp. 565-565
Author(s):  
G. Cayrel de Strobel ◽  
R. Cayrel ◽  
Y. Lebreton

After having studied in great detail the observational HR diagram (log Teff, Mbol) composed by 40 main sequence stars of the Hyades (Perryman et al.,1997, A&A., in press), we have tried to apply the same method to the observational main sequences of the three next nearest open clusters: Coma Berenices, the Pleiades, and Praesepe. This method consists in comparing the observational main sequence of the clusters with a grid of theoretical ZAMSs. The stars composing the observational main sequences had to have reliable absolute bolometric magnitudes, coming all from individual Hipparcos parallaxes, precise bolometric corrections, effective temperatures and metal abundances from high resolution detailed spectroscopic analyses. If we assume, following the work by Fernandez et al. (1996, A&A,311,127), that the mixing-lenth parameter is solar, the position of a theoretical ZAMS, in the (log Teff, Mbol) plane, computed with given input physics, only depends on two free parameters: the He content Y by mass, and the metallicity Z by mass. If effective temperature and metallicity of the constituting stars of the 4 clusters are previously known by means of detailed analyses, one can deduce their helium abundances by means of an appropriate grid of theoretical ZAMS’s. The comparison between the empirical (log Teff, Mbol) main sequence of the Hyades and the computed ZAMS corresponding to the observed metallicity Z of the Hyades (Z= 0.0240 ± 0.0085) gives a He abundance for the Hyades, Y= 0.26 ± 0.02. Our interpretation, concerning the observational position of the main sequence of the three nearest clusters after the Hyades, is still under way and appears to be greatly more difficult than for the Hyades. For the moment we can say that: ‒ The 15 dwarfs analysed in detailed in Coma have a solar metallicity: [Fe/H] = -0.05 ± 0.06. However, their observational main sequence fit better with the Hyades ZAMS. ‒ The mean metallicity of 13 Pleiades dwarfs analysed in detail is solar. A metal deficient and He normal ZAMS would fit better. But, a warning for absorption in the Pleiades has to be recalled. ‒ The upper main sequence of Praesepe, (the more distant cluster: 180 pc) composed by 11 stars, analysed in detail, is the one which has the best fit with the Hyades ZAMS. The deduced ‘turnoff age’ of the cluster is slightly higher than that of the Hyades: 0.8 Gyr instead of 0.63 Gyr.


2015 ◽  
Vol 101 ◽  
pp. 01010 ◽  
Author(s):  
Konstanze Zwintz ◽  
Luca Fossati ◽  
Tatiana Ryabchikova ◽  
David Guenther ◽  
Conny Aerts

1993 ◽  
Vol 137 ◽  
pp. 410-425 ◽  
Author(s):  
A. Noels ◽  
N. Grevesse

AbstractWe present the standard models for small and intermediate main sequence stars and we discuss some of the problems arising with semiconvection and overshooting. The surface abundance of Li serves as a test for other physical mechanisms, including microscopic and turbulent diffusion, rotation and mass loss.


2020 ◽  
Vol 494 (2) ◽  
pp. 2236-2243 ◽  
Author(s):  
Tyrone E Woods ◽  
Alexander Heger ◽  
Lionel Haemmerlé

ABSTRACT Supermassive stars have been proposed as the progenitors of the massive ($\sim \!10^{9}\, \mathrm{M}_{\odot }$) quasars observed at z ∼ 7. Prospects for directly detecting supermassive stars with next-generation facilities depend critically on their intrinsic lifetimes, as well as their formation rates. We use the one-dimensional stellar evolution code kepler to explore the theoretical limiting case of zero-metallicity non-rotating stars, formed monolithically with initial masses between $10$ and $190\, \mathrm{kM}_{\odot }$. We find that stars born with masses between $\sim\! 60$ and $\sim\! 150\, \mathrm{kM}_{\odot }$ collapse at the end of the main sequence, burning stably for $\sim\! 1.5\, \mathrm{Myr}$. More massive stars collapse directly through the general relativistic instability after only a thermal time-scale of $\sim\! 3$–$4\, \mathrm{kyr}$. The expected difficulty in producing such massive thermally relaxed objects, together with recent results for currently preferred rapidly accreting formation models, suggests that such ‘truly direct’ or ‘dark’ collapses may not be typical for supermassive objects in the early Universe. We close by discussing the evolution of supermassive stars in the broader context of massive primordial stellar evolution and the possibility of supermassive stellar explosions.


1988 ◽  
Vol 132 ◽  
pp. 95-98
Author(s):  
J. Bouvier

Until 1980, only a handful of low-mass, active pre-main sequence (pms) stars had known rotation velocities (vsini) /1/. Since then, increasingly sensitive detectors coupled to large telescopes led to high–resolution (a few 104) spectroscopic studies of these faint stars (mv = 10–13), with S/N ratio of the order of 100. The measurement of vsini for large samples of pms stars that resulted brought new insights on various pressing questions related to stellar formation and early stellar evolution : how do the rotation rates of pms stars compare with those expected from models of stellar formation ? how does the stellar angular momentum change during pms evolution ? is pms activity linked with rotation as would be expected if activity were triggered by magnetic processes ?


1989 ◽  
Vol 106 ◽  
pp. 228-228
Author(s):  
J. A. Guzik ◽  
T. E. Beach

The surface C/N abundance ratios of many cluster and field G and K giants following the 1st dredge-up phase are much lower than predicted from standard stellar evolution modeling. The occurrence of substantial mass loss, either during or immediately after the main-sequence phase would both reduce the mass fraction of the unprocessed envelope necessary to contaminate with CN-cycle products, as well as allow CN-processing of a greater amount of core material during the earlier high-mass phase. Willson, Bowen and Struck-Marcell (1987) have proposed that a combination of pulsation and rapid rotation could drive substantial mass loss in main-sequence stars of initial mass 1-3 MΘ. We evolved a grid of 16 mass-losing models from the zero-age main sequence through 1st dredge-up. The models have initial masses of 1.25, 1.5, 1.75 and 2.0 MΘ, and exponentially decreasing mass-loss rates with e-folding times 0.2, 0.4, 1.0 and 2.0 Gyr; all models evolve toward a final mass of 1.0 M". Since the mass-loss epoch is short-lived, most of the models reach 1.0 M0 rapidly, and follow the evolutionary track of a standard 1 MΘ model redward away from the main sequence and up the 1st giant branch. The convecuve envelope deepens during 1st dredge-up to homogenize the outer 3/4 of the star's final mass.


1977 ◽  
Vol 4 (2) ◽  
pp. 119-135
Author(s):  
B. E. J. Pagel

Abundance peculiarities in successive stages of stellar evolution are reviewed. Main-sequence stars show anomalies in lithium and, on the upper main sequence, the Am, Ap and Bp effects, which may be largely due to separation processes, and helium and CNO anomalies to which nuclear evolution and mixing could have contributed. Red giants of both stellar Populations commonly show more or less extreme variations among the C, N, 0 isotopes, sometimes accompanied by s-process enhancement, due to mixing out in various evolutionary stages. Detailed anomalies expected from galactic evolution are also briefly considered. Novae show strong effects in C, N, 0 and synthesis of heavier elements is displayed by the supernova remnant Cassiopeia A.


2013 ◽  
Vol 9 (S301) ◽  
pp. 205-212
Author(s):  
Hilding R. Neilson

AbstractBoth pulsation and mass loss are commonly observed in stars and are important ingredients for understanding stellar evolution and structure, especially for massive stars. There is a growing body of evidence that pulsation can also drive and enhance mass loss in massive stars and that pulsation-driven mass loss is important for stellar evolution. In this review, I will discuss recent advances in understanding pulsation-driven mass loss in massive main-sequence stars, classical Cepheids and red supergiants and present some challenges remaining.


Galaxies ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 3
Author(s):  
Guillermo Torres ◽  
Gregory A. Feiden ◽  
Andrew Vanderburg ◽  
Jason L. Curtis

Main-sequence stars with convective envelopes often appear larger and cooler than predicted by standard models of stellar evolution for their measured masses. This is believed to be caused by stellar activity. In a recent study, accurate measurements were published for the K-type components of the 1.62-day detached eclipsing binary EPIC 219511354, showing the radii and temperatures for both stars to be affected by these discrepancies. This is a rare example of a system in which the age and chemical composition are known, by virtue of being a member of the well-studied open cluster Ruprecht 147 (age~3 Gyr, [Fe/H] = +0.10). Here, we report a detailed study of this system with nonstandard models incorporating magnetic inhibition of convection. We show that these calculations are able to reproduce the observations largely within their uncertainties, providing robust estimates of the strength of the magnetic fields on both stars: 1600 ± 130 G and 1830 ± 150 G for the primary and secondary, respectively. Empirical estimates of the magnetic field strengths based on the measured X-ray luminosity of the system are roughly consistent with these predictions, supporting this mechanism as a possible explanation for the radius and temperature discrepancies.


1981 ◽  
Vol 59 ◽  
pp. 361-371
Author(s):  
R. Ebert ◽  
H. Zinnecker

AbstractIn this paper we present a fully hydrodynamical treatment of the stationary isothermal accretion problem onto a moving gravitating point mass. The derivation is purely analytical. We find that the accretion rate is more than a factor of 50 higher than the accretion rate derived from the partially non-hydrodynamical treatment by Hoyle and Lyttleton (1939) or Bondi and Hoyle (1944). This result may have some bearing on the evolutionary tracks of young pre-Main Sequence stars still embedded in their parent protocluster cloud. We discuss the work by Federova (1979) who investigated the pre-Main Sequence evolution of degenerate low mass ‘stars’ with strong accretion of protocluster cloud material. We suggest that the stars which lie below the Main Sequence in young clusters could strongly accrete matter at the pre-Main Sequence stage.


Sign in / Sign up

Export Citation Format

Share Document