scholarly journals Magnetic Field - Stellar Winds Interaction

2014 ◽  
Vol 9 (S307) ◽  
pp. 321-329
Author(s):  
Asif ud-Doula

AbstractAs per the recent study by the MiMeS collaboration, only about 10% of massive stars possess organized global magnetic fields, typically dipolar in nature. The competition between such magnetic fields and highly non-linear radiative forces that drive the stellar winds leads to a highly complex interaction. Such an interplay can lead to a number of observable phenomena, e.g. X-ray, wind confinement, rapid stellar spindown. However, due to its complexity, such an interaction cannot usually be modeled analytically, instead numerical modeling becomes a necessary tool. In this talk, I will discuss how numerical magnetohydrodynamic (MHD) simulations are employed to understand the nature of such magnetized massive star winds.

2008 ◽  
Vol 4 (S259) ◽  
pp. 449-452 ◽  
Author(s):  
Véronique Petit ◽  
G. A. Wade ◽  
L. Drissen ◽  
T. Montmerle ◽  
E. Alecian

AbstractIn massive stars, magnetic fields are thought to confine the outflowing radiatively-driven wind, resulting in X-ray emission that is harder, more variable and more efficient than that produced by instability-generated shocks in non-magnetic winds. Although magnetic confinement of stellar winds has been shown to strongly modify the mass-loss and X-ray characteristics of massive OB stars, we lack a detailed understanding of the complex processes responsible. The aim of this study is to examine the relationship between magnetism, stellar winds and X-ray emission of OB stars. In conjunction with a Chandra survey of the Orion Nebula Cluster, we carried out spectropolarimatric ESPaDOnS observations to determine the magnetic properties of massive OB stars of this cluster.


2016 ◽  
Vol 12 (S329) ◽  
pp. 151-155
Author(s):  
L. M. Oskinova ◽  
R. Ignace ◽  
D. P. Huenemoerder

AbstractObservations with powerful X-ray telescopes, such as XMM-Newton and Chandra, significantly advance our understanding of massive stars. Nearly all early-type stars are X-ray sources. Studies of their X-ray emission provide important diagnostics of stellar winds. High-resolution X-ray spectra of O-type stars are well explained when stellar wind clumping is taking into account, providing further support to a modern picture of stellar winds as non-stationary, inhomogeneous outflows. X-ray variability is detected from such winds, on time scales likely associated with stellar rotation. High-resolution X-ray spectroscopy indicates that the winds of late O-type stars are predominantly in a hot phase. Consequently, X-rays provide the best observational window to study these winds. X-ray spectroscopy of evolved, Wolf-Rayet type, stars allows to probe their powerful metal enhanced winds, while the mechanisms responsible for the X-ray emission of these stars are not yet understood.


2020 ◽  
Vol 495 (1) ◽  
pp. 1360-1371
Author(s):  
Ankan Sur ◽  
Brynmor Haskell ◽  
Emily Kuhn

ABSTRACT We have studied numerically the evolution of magnetic fields in barotropic neutron stars, by performing non-linear magnetohydrodynamical simulations with the code pluto. For both initially predominantly poloidal and toroidal fields, with varying strengths, we find that the field settles down to a mixed poloidal–toroidal configuration, where the toroidal component contributes between ${\rm 10}$ and $20 {{\ \rm per\ cent}}$ of the total magnetic energy. This is, however, not a strict equilibrium, as the instability leads to the development of turbulence, which, in turn, gives rise to an inverse helicity cascade, which determines the final ‘twisted torus’ setup. The final field configuration is thus dictated by the non-linear saturation of the instability, and is not stationary. The average energy of the poloidal and toroidal components, however, is approximately stable in our simulations, and a complex multipolar structure emerges at the surface, while the magnetic field is dipolar at the exterior boundary, outside the star.


2007 ◽  
Vol 3 (S250) ◽  
pp. 17-24
Author(s):  
David H. Cohen

AbstractYoung O stars are strong, hard, and variable X-ray sources; properties that strongly affect their circumstellar and galactic environments. After ≈ 1 Myr, these stars settle down to become steady sources of soft X-rays. I will use high-resolution X-ray spectroscopy and MHD modeling to show that young O stars like θ1 Ori C are well explained by the magnetically channeled wind shock scenario. After their magnetic fields dissipate, older O stars produce X-rays via shock heating in their unstable stellar winds. Here too I will use X-ray spectroscopy and numerical modeling to confirm this scenario. In addition to elucidating the nature and cause of the O star X-ray emission, modeling of the high-resolution X-ray spectra of O supergiants provides strong evidence that mass-loss rates of these O stars have been overestimated.


Author(s):  
Z Keszthelyi ◽  
G Meynet ◽  
F Martins ◽  
A de Koter ◽  
A David-Uraz

Abstract τ Sco, a well-studied magnetic B-type star in the Uτer Sco association, has a number of surprising characteristics. It rotates very slowly and shows nitrogen excess. Its surface magnetic field is much more complex than a purely dipolar configuration which is unusual for a magnetic massive star. We employ the cmfgen radiative transfer code to determine the fundamental parameters and surface CNO and helium abundances. Then, we employ mesa and genec stellar evolution models accounting for the effects of surface magnetic fields. To reconcile τ Sco’s properties with single-star models, an increase is necessary in the efficiency of rotational mixing by a factor of 3 to 10 and in the efficiency of magnetic braking by a factor of 10. The spin down could be explained by assuming a magnetic field decay scenario. However, the simultaneous chemical enrichment challenges the single-star scenario. Previous works indeed suggested a stellar merger origin for τ Sco. However, the merger scenario also faces similar challenges as our magnetic single-star models to explain τ Sco’s simultaneous slow rotation and nitrogen excess. In conclusion, the single-star channel seems less likely and versatile to explain these discrepancies, while the merger scenario and other potential binary-evolution channels still require further assessment as to whether they may self-consistently explain the observables of τ Sco.


2021 ◽  
Vol 3 (4) ◽  
Author(s):  
Yogesh Kumar ◽  
Rabia Sultana ◽  
Prince Sharma ◽  
V. P. S. Awana

AbstractWe report the magneto-conductivity analysis of Bi2Se3 single crystal at different temperatures in a magnetic field range of ± 14 T. The single crystals are grown by the self-flux method and characterized through X-ray diffraction, Scanning Electron Microscopy, and Raman Spectroscopy. The single crystals show magnetoresistance (MR%) of around 380% at a magnetic field of 14 T and a temperature of 5 K. The Hikami–Larkin–Nagaoka (HLN) equation has been used to fit the magneto-conductivity (MC) data. However, the HLN fitted curve deviates at higher magnetic fields above 1 T, suggesting that the role of surface-driven conductivity suppresses with an increasing magnetic field. This article proposes a speculative model comprising of surface-driven HLN and added quantum diffusive and bulk carriers-driven classical terms. The model successfully explains the MC of the Bi2Se3 single crystal at various temperatures (5–200 K) and applied magnetic fields (up to 14 T).


2010 ◽  
Vol 6 (S270) ◽  
pp. 57-64
Author(s):  
Ian A. Bonnell ◽  
Rowan J Smith

AbstractThere has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable mechanism. Stellar mergers, on the other hand, are unlikely to occur in any but the most massive clusters and hence should not be a primary avenue for massive star formation. In contrast to this success, we are still uncertain as to how the mass that forms a massive star is accumulated. there are two possible mechanisms including the collapse of massive prestellar cores and competitive accretion in clusters. At present, there are theoretical and observational question marks as to the existence of high-mass prestellar cores. theoretically, such objects should fragment before they can attain a relaxed, centrally condensed and high-mass state necessary to form massive stars. Numerical simulations including cluster formation, feedback and magnetic fields have not found such objects but instead point to the continued accretion in a cluster potential as the primary mechanism to form high-mass stars. Feedback and magnetic fields act to slow the star formation process and will reduce the efficiencies from a purely dynamical collapse but otherwise appear to not significantly alter the process.


2016 ◽  
Vol 12 (S329) ◽  
pp. 369-372
Author(s):  
C. L. Fletcher ◽  
V. Petit ◽  
Y. Nazé ◽  
G. A. Wade ◽  
R. H. Townsend ◽  
...  

AbstractRecent spectropolarimetric surveys of bright, hot stars have found that ~10% of OB-type stars contain strong (mostly dipolar) surface magnetic fields (~kG). The prominent paradigm describing the interaction between the stellar winds and the surface magnetic field is the magnetically confined wind shock (MCWS) model. In this model, the stellar wind plasma is forced to move along the closed field loops of the magnetic field, colliding at the magnetic equator, and creating a shock. As the shocked material cools radiatively it will emit X-rays. Therefore, X-ray spectroscopy is a key tool in detecting and characterizing the hot wind material confined by the magnetic fields of these stars. Some B-type stars are found to have very short rotational periods. The effects of the rapid rotation on the X-ray production within the magnetosphere have yet to be explored in detail. The added centrifugal force due to rapid rotation is predicted to cause faster wind outflows along the field lines, leading to higher shock temperatures and harder X-rays. However, this is not observed in all rapidly rotating magnetic B-type stars. In order to address this from a theoretical point of view, we use the X-ray Analytical Dynamical Magnetosphere (XADM) model, originally developed for slow rotators, with an implementation of new rapid rotational physics. Using X-ray spectroscopy from ESA’s XMM-Newton space telescope, we observed 5 rapidly rotating B-types stars to add to the previous list of observations. Comparing the observed X-ray luminosity and hardness ratio to that predicted by the XADM allows us to determine the role the added centrifugal force plays in the magnetospheric X-ray emission of these stars.


2007 ◽  
Vol 3 (S250) ◽  
pp. 89-96
Author(s):  
D. John Hillier

AbstractThe standard theory of radiation driven winds has provided a useful framework to understand stellar winds arising from massive stars (O stars, Wolf-Rayet stars, and luminous blue variables). However, with new diagnostics, and advances in spectral modeling, deficiencies in our understanding of stellar winds have been thrust to the forefront of our research efforts. Spectroscopic observations and analyses have shown the importance of inhomogeneities in stellar winds, and revealed that there are fundamental discrepancies between predicted and theoretical mass-loss rates. For late O stars, spectroscopic analyses derive mass-loss rates significantly lower than predicted. For all O stars, observed X-ray fluxes are difficult to reproduce using standard shock theory, while observed X-ray profiles indicate lower mass-loss rates, the potential importance of porosity effects, and an origin surprisingly close to the stellar photosphere. In O stars with weak winds, X-rays play a crucial role in determining the ionization balance, and must be taken into account.


1999 ◽  
Vol 193 ◽  
pp. 636-644
Author(s):  
Elias Brinks ◽  
Fabian Walter

Neutral hydrogen (H I) is a magnificent tool when studying the structure of the interstellar medium (ISM) as it is relatively easily observable and can be mapped at good spatial and velocity resolution with modern instruments. Moreover, it traces the cool (∼ 100 K) and warm (∼ 5000 K) neutral gas which together make up about 60%, or the bulk, of the ISM. The currently accepted picture is that stellar winds and subsequent supernovae are the origin for the clearly defined holes or bubbles within the more or less smooth neutral medium. The H I can therefore serve indirectly as a tracer of the hot interstellar medium (HIM) left behind after the most massive stars within an OB association have gone off as supernovae. A splendid example is the dwarf galaxy IC 2574 for which we discuss H I, optical and X-ray observations.


Sign in / Sign up

Export Citation Format

Share Document