scholarly journals The VLT/X-shooter GRB afterglow legacy survey

2016 ◽  
Vol 12 (S329) ◽  
pp. 410-410
Author(s):  
Lex Kaper ◽  
Johan P.U. Fynbo ◽  
Vanna Pugliese ◽  
Daan van Rest

AbstractThe Swift satellite allows us to use gamma-ray bursts (GRBs) to peer through the hearts of star forming galaxies through cosmic time. Our open collaboration, representing most of the active European researchers in this field, builds a public legacy sample of GRB X-shooter spectroscopy while Swift continues to fly. To date, our spectroscopy of more than 100 GRB afterglows covers a redshift range from 0.059 to about 8 (Tanvir et al. 2009, Nature 461, 1254), with more than 20 robust afterglow-based metallicity measurements (over a redshift range from 1.7 to 5.9). With afterglow spectroscopy (throughout the electromagnetic spectrum from X-rays to the sub-mm) we can hence characterize the properties of star-forming galaxies over cosmic history in terms of redshift, metallicity, molecular content, ISM temperature, UV-flux density, etc.. These observations provide key information on the final evolution of the most massive stars collapsing into black holes, with the potential of probing the epoch of the formation of the first (very massive) stars.VLT/X-shooter (Vernet et al. 2011, A&A 536, A105) is in many ways the ideal GRB follow-up instrument and indeed GRB follow-up was one of the primary science cases behind the instrument design and implementation. Due to the wide wavelength coverage of X-shooter, in the same observation one can detect molecular H2 absorption near the atmospheric cut-off and many strong emission lines from the host galaxy in the near-infrared (e.g., Friis et al. 2015, MNRAS 451, 167). For example, we have measured a metallicity of 0.1 Z⊙ for GRB 100219A at z = 4.67 (Thöne et al. 2013, MNRAS 428, 3590), 0.02 Z⊙ for GRB 111008A at z = 4.99 (Sparre et al. 2014, ApJ 785, 150) and 0.05 Z⊙ for GRB 130606A at z = 5.91 (Hartoog et al. 2015, A&A 580, 139). In the latter, the very high value of [Al/Fe]=2.40 ± 0.78 might be due to a proton capture process and may be a signature of a previous generation of massive (perhaps even the first) stars. Reconciling the abundance patterns of GRB absorbers, other types of absorbers (in particular QSO DLAs), and old stars in the Local Group is an important long-term goal of this program (see Sparre et al. 2014, ApJ 785, 150). Metallicities are also measured from host emission lines (Krühler et al. 2015, A&A 581, A125). GRB spectroscopy also allows us to determine the dust content of their environments, both through analysis of the depletion pattern and the measurement of the associated extinction (Japelj et al. 2015, A&A 451, 2050). This way one can quantify the dust-to-metals ratio and its evolution with redshift. The detection of GRBs at z > 6 shows that GRBs have become competitive as a tool to identifying galaxies at the highest redshifts and unsurpassed in providing detailed abundance information via absorption line spectroscopy.

1987 ◽  
Vol 115 ◽  
pp. 181-181 ◽  
Author(s):  
Adair P. Lane ◽  
John Bally

Near infrared (2 micron) emission lines from molecular hydrogen provide a powerful probe of the morphology and energetics of outflows associated with stellar birth. The H2 emission regions trace the location of shock waves formed when the high velocity outflow from young stars encounters dense quiescent gas. Since H2 is the dominant coolant of the hot post-shock molecular gas, the H2 lines provide a measure of the fraction of the total mechanical luminosity radiated away from the cloud.


2018 ◽  
Vol 620 ◽  
pp. A119 ◽  
Author(s):  
A. de Ugarte Postigo ◽  
C. C. Thöne ◽  
J. Bolmer ◽  
S. Schulze ◽  
S. Martín ◽  
...  

Context. Long gamma-ray bursts (GRBs) are produced during the dramatic deaths of massive stars with very short lifetimes, meaning that they explode close to the birth place of their progenitors. Over a short period they become the most luminous objects observable in the Universe, being perfect beacons to study high-redshift star-forming regions. Aims. We aim to use the afterglow of GRB 161023A at a redshift z = 2.710 as a background source to study the environment of the explosion and the intervening systems along its line of sight. Methods. For the first time, we complement ultraviolet (UV), optical and near-infrared (NIR) spectroscopy with millimetre spectroscopy using the Atacama Large Millimeter Array (ALMA), which allows us to probe the molecular content of the host galaxy. The X-shooter spectrum shows a plethora of absorption features including fine-structure and metastable transitions of Fe, Ni, Si, C, and O. We present photometry ranging from 43 s to over 500 days after the burst. Results. We infer a host-galaxy metallicity of [Zn/H] = −1.11 ± 0.07, which, corrected for dust depletion, results in [X/H] = −0.94 ± 0.08. We do not detect molecular features in the ALMA data, but we derive limits on the molecular content of log(NCO/cm−2) < 15.7 and log(NHCO+/cm−-12, which are consistent with those that we obtain from the optical spectra, log(NH2/cm−2)< 15.2 and log(NCO/cm−2) < 14.5. Within the host galaxy, we detect three velocity systems through UV, optical and NIR absorption spectroscopy, all with levels that were excited by the GRB afterglow. We determine the distance from these systems to the GRB to be in the range between 0.7 and 1.0 kpc. The sight line to GRB 161023A shows nine independent intervening systems, most of them with multiple components. Conclusions. Although no molecular absorption was detected for GRB 161023A, we show that GRB millimetre spectroscopy is now feasible and is opening a new window on the study of molecular gas within star-forming galaxies at all redshifts. The most favoured lines of sight for this purpose will be those with high metallicity and dust.


2014 ◽  
Vol 10 (S309) ◽  
pp. 239-242
Author(s):  
Giovanni Cresci

AbstractQuasar feedback in the form of powerful outflows is invoked as a key mechanism to quench star formation, preventing massive galaxies to over-grow and producing the red colors of ellipticals. On the other hand, some models are also requiring ‘positive’ AGN feedback, inducing star formation in the host galaxy through enhanced gas pressure in the interstellar medium. However, finding observational evidence of the effects of both types of feedback is still one of the main challenges of extragalactic astronomy, as few observations of energetic and extended radiatively-driven winds are available. We present SINFONI near infrared integral field spectroscopy of XID2028, an obscured, radio-quiet z=1.59 QSO, in which we clearly resolve a fast (1500 km/s) and extended (up to 13 kpc from the black hole) outflow in the [OIII] lines emitting gas, whose large velocity and outflow rate are not sustainable by star formation only. The narrow component of Hα emission and the rest frame U band flux show that the outflow position lies in the center of an empty cavity surrounded by star forming regions on its edge. The outflow is therefore removing the gas from the host galaxy (‘negative feedback’), but also triggering star formation by outflow induced pressure at the edges (‘positive feedback’). XID2028 represents the first example of a host galaxy showing both types of feedback simultaneously at work.


Author(s):  
Anne Inkenhaag ◽  
Peter G Jonker ◽  
Giacomo Cannizzaro ◽  
Daniel Mata Sánchez ◽  
Richard D Saxton

Abstract We present results of our analysis of spectra of the host galaxies of the candidate Tidal Disruption Events (TDEs) XMMSL1 J111527.3+180638 and PTF09axc to determine the nature of these transients. We subtract the starlight component from the host galaxy spectra to determine the origin of the nuclear emission lines. Using a Baldwin–Phillips–Terlevich (BPT) diagram we conclude that the host galaxy of XMMSL1 J111527.3+180638 is classified as a Seyfert galaxy, suggesting this transient is likely to be caused by (extreme) variability in the active galactic nucleus. We find that the host of PTF09axc falls in the ’star-forming’ region of the BPT-diagram, implying that the transient is a strong TDE candidate. For both galaxies we find a WISE-colour difference of W1 − W2 &lt; 0.8, which means there is no indication of a dusty torus and therefore an active galactic nucleus, seemingly contradicting our BPT finding for the host of XMMSL1 J111527.3+180638. We discuss possible reasons for the discrepant results obtained through the two methods.


2019 ◽  
Vol 630 ◽  
pp. A132 ◽  
Author(s):  
E. Sissa ◽  
R. Gratton ◽  
J. M. Alcalà ◽  
S. Desidera ◽  
S. Messina ◽  
...  

Context. R CrA is the brightest member of the Coronet star-forming region and is the closest Herbig AeBe star with a spectrum dominated by emission lines. Its luminosity has been monitored since the end of the nineteenth century, but the origin of its variability, which shows a stable period of 65.767 ± 0.007 days, is still unknown. Aims. We studied photometric and spectroscopic data for this star to investigate the nature of the variability of R CrA. Methods. We exploited the fact that the near-infrared luminosity of the Herbig AeBe stars is roughly proportional to the total luminosity of the stars to derive the absorption, and then mass and age of R CrA. In addition, we modeled the periodic modulation of the light curve as due to partial attenuation of a central binary by a circumbinary disk. This model reproduces the observations very well. Results. We found that the central object in R CrA is a very young (1.5 ± 1.5 Myr) highly absorbed (AV = 5.47 ± 0.4 mag) binary; we obtain masses of MA = 3.02 ± 0.43 M⊙ and MB = 2.32 ± 0.35 M⊙ for the two components. We propose that the secular decrease of the apparent luminosity of R CrA is due to a progressive increase of the disk absorption. This might be related to precession of a slightly inclined disk caused by the recently discovered M-dwarf companion. This means that R CrA might be a triple system hosting a disk.


2018 ◽  
Vol 614 ◽  
pp. A116 ◽  
Author(s):  
S. Ramírez Alegría ◽  
A. Herrero ◽  
K. Rübke ◽  
A. Marín-Franch ◽  
M. García ◽  
...  

Context. Recent near-infrared data have contributed to unveiling massive and obscured stellar populations in both new and previously known clusters in our Galaxy. These discoveries have lead us to view the Milky Way as an active star-forming machine. Aims. We look for young massive cluster candidates as over-densities of OB-type stars. The first search, focused on the Galactic direction l = 38°, resulted in the detection of two objects with a remarkable population of OB-type star candidates. Methods. With a modified version of the friends-of-friends algorithm AUTOPOP and using 2MASS and UKIDSS-GPS near-infrared (J, H, and K) photometry for one of our cluster candidates (named Masgomas-6) we selected 30 stars for multi-object and long-slit H and K band spectroscopy. With the spectral classification and the near-infrared photometric data, we derive individual distance, extinction, and radial velocity. Results. Of the 30 spectroscopically observed stars, 20 are classified as massive stars, including OB-types (dwarfs, giants and supergiants), two red supergiants, two Wolf−Rayets (WR122-11 and the new WR122-16), and one transitional object (the LBV candidate IRAS 18576+0341). The individual distances and radial velocities do not agree with a single cluster, indicating that we are observing two populations of massive stars in the same line of sight: Masgomas-6a and Masgomas-6b. The first group of massive stars, located at 3.9$^{&#x002B;0.4}_{-0.3}$ kpc, contains both Wolf−Rayets and most of the OB-dwarfs; the second group, located at 9.6 ± 0.4 kpc, hosts the LBV candidate and an evolved population of supergiants. We are able to identify massive stars at two Galactic arms, but we cannot clearly identify whether these massive stars form clusters or associations.


2020 ◽  
Vol 499 (4) ◽  
pp. 5107-5120
Author(s):  
V Reynaldi ◽  
M Guainazzi ◽  
S Bianchi ◽  
I Andruchow ◽  
F García ◽  
...  

ABSTRACT We present the Catalogue of High Resolution Spectra of Obscured Sources (CHRESOS) from the XMM–Newton Science Archive. It comprises the emission-line luminosities of H- and He-like transitions from C to Si, and the Fe 3C and Fe 3G L-shell ones. Here, we concentrate on the soft X-ray O vii (f) and O viii Lyα emission lines to shed light on to the physical processes with which their formation can be related to active galactic nucleus (AGN) versus star-forming regions. We compare their luminosity with that of two other important oxygen key lines [O iii] λ5007 Å, in the optical, and [O iv] 25.89 μm, in the infrared (IR). We also test O vii (f) and O viii Lyα luminosities against that of continuum bands in the IR and hard X-rays, which point to different ionization processes. We probe into those processes by analysing photoionization and collisional ionization model predictions upon our lines. We show that both scenarios can explain the formation and observed intensities of O vii (f) and O viii Lyα. By analysing the relationships between O vii (f) and O viii Lyα, and all other observables: [O iii] λ5007 Å, [O iv] 25.89 μm emission lines, and mid-infrared (MIR) 12 μm, far-infrared (FIR) 60 and 100 μm, 2–10 and 14–195 keV continuum bands, we conclude that the AGN radiation field is mainly responsible of the soft X-ray oxygen excitation.


2019 ◽  
Vol 629 ◽  
pp. A140
Author(s):  
J. Sollerman ◽  
J. Selsing ◽  
P. M. Vreeswijk ◽  
P. Lundqvist ◽  
A. Nyholm

Context. Pulsars are well studied all over the electromagnetic spectrum, and the Crab pulsar may be the most studied object in the sky. Nevertheless, a high-quality optical to near-infrared (NIR) spectrum of the Crab or any other pulsar has not been published to date. Aims. Obtaining a properly flux-calibrated spectrum enables us to measure the spectral index of the pulsar emission, without many of the caveats from previous studies. This was the main aim of this project, but in addition we could also detect absorption and emission features from the pulsar and nebula over an unprecedentedly wide wavelength range. Methods. A spectrum was obtained with the X-shooter spectrograph on the Very Large Telescope. Special care was given to the flux-calibration of these data. Results. A high signal-to-noise spectrum of the Crab pulsar was obtained from 300 nm to 2400 nm. The spectral index fit to this spectrum is flat with αν = 0.16 ± 0.07. For the emission lines we measured a maximum velocity of ∼1600 km s−1, whereas the absorption lines from the material between us and the pulsar is unresolved at the ∼50 km s−1 resolution. A number of diffuse interstellar bands and a few NIR emission lines that have previously not been reported from the Crab are highlighted.


2019 ◽  
Vol 631 ◽  
pp. A11 ◽  
Author(s):  
Marina Ramón-Pérez ◽  
Ángel Bongiovanni ◽  
Ana María Pérez García ◽  
Jordi Cepa ◽  
Jakub Nadolny ◽  
...  

Aims. We take advantage of the capabilities of the OSIRIS Tunable Emission Line Object (OTELO) survey to select and study the AGN population in the field. In particular, we aim to perform an analysis of the properties of these objects, including their demography, morphology, and IR luminosity. Focusing on the population of Hα emitters at z ∼ 0.4, we also aim to study the environments of AGN and non-AGN galaxies at that redshift. methods. We make use of the multiwavelength catalogue of objects in the field compiled by the OTELO survey, unique in terms of minimum flux and equivalent width. We also take advantage of the pseudo-spectra built for each source, which allow the identification of emission lines and the discrimination of different types of objects. Results. We obtained a sample of 72 AGNs in the field of OTELO, selected with four different methods in the optical, X-rays, and mid-infrared bands. We find that using X-rays is the most efficient way to select AGNs. An analysis was performed on the AGN population of OTELO in order to characterise its members. At z ∼ 0.4, we find that up to 26% of our Hα emitters are AGNs. At that redshift, AGNs are found in identical environments to non-AGNs, although they represent the most clustered group when compared to passive and star-forming galaxies. The majority of our AGNs at any redshift were classified as late-type galaxies, including a 16% proportion of irregulars. Another 16% of AGNs show signs of interactions or mergers. Regarding the infrared luminosity, we are able to recover all the luminous infrared galaxies (LIRGs) in the field of OTELO up to z ∼ 1.6. We find that the proportion of LIRGs and ultra-luminous infraed galaxies (ULIRGs) is higher among the AGN population, and that ULIRGs show a higher fraction of AGNs than LIRGs.


2007 ◽  
Vol 3 (S243) ◽  
pp. 95-102
Author(s):  
Jeffrey S. Bary ◽  
Sean P. Matt

AbstractHydrogen emission lines observed from T Tauri stars (TTS) are associated with the accretion/outflow of gas in these young star forming systems. Magnetospheric accretion models have been moderately successful at reproducing the shapes of several Hi emission line profiles, suggesting that the emission arises in the accretion funnels. Despite considerable effort to model and observe these emission features, the physical conditions of the gas confined to the funnel flows remain poorly constrained by observation. We conducted a mutli-epoch near-infrared spectroscopic survey of 16 actively accreting classical TTS in the Taurus-Auriga star forming region. We present an analysis of these simultaneously acquired line flux ratios of many Paschen and Brackett series emission lines, in which we compare the observed ratios to those predicted by the Case B approximation of hydrogen recombination line theory. We find that the line flux ratios for the Paschen and Brackett decrements as well as a comparison between Brγ and Paschen transitions agree well with the Case B models with T < 5000 K and ne ≈ 1010 cm−3.


Sign in / Sign up

Export Citation Format

Share Document